209
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Prediction and validation of HIV-1 gp41 ecto-transmembrane domain post-fusion trimeric structure using molecular modeling

, &
Pages 2592-2603 | Received 02 Dec 2018, Accepted 19 Jun 2019, Published online: 02 Jul 2019

References

  • Allen, W. J., Yi, H. A., Gochin, M., Jacobs, A., & Rizzo, R. C. (2015). Small molecule inhibitors of HIVgp41 N-heptad repeat trimer formation. Bioorganic & Medicinal Chemistry Letters, 25, 2853–2859. doi: 10.1016/j.bmcl.2015.04.067
  • Apellániz, B., Rujas, E., Serrano, S., Morante, K., Tsumoto, K., Caaveiro, J. M., … Nieva, J. L. (2015). The atomic structure of the HIV-1 gp41 transmembrane domain and its connection to the immunogenic membrane-proximal external region. Journal of Biological Chemistry, 290, 12999–13015. doi: 10.1074/jbc.M115.644351
  • Archin, N. M., Sung, J. M., Garrido, C., Soriano-Sarabia, N., & Margolis, D. M. (2014). Eradicating HIV-1 infection: Seeking to clear a persistent pathogen. Nature Reviews Microbiology, 12, 750–764. doi: 10.1038/nrmicro3352
  • Arhel, N., & Kirchhoff, F. (2010). Host proteins involved in HIV infection: New therapeutic targets. Biochimica et Biophysica Acta, 1802, 313–321. doi: 10.1016/j.bbadis.2009.12.003
  • Arts, E. J., & Hazuda, D. J. (2012). HIV-1 antiretroviral drug therapy. Cold Spring Harbor Perspectives in Medicine, 2(4), a007161.doi: 10.1101/cshperspect.a007161
  • Ashkenazi, A., Merklinger, E., & Shai, Y. (2012). Intramolecular interactions within the human immunodeficiency virus-1 gp41 loop region and their involvement in lipid merging. Biochemistry, 51, 6981–6989. doi: 10.1021/bi300868f
  • Ashkenazi, A., Viard, M., Wexler-Cohen, Y., Blumenthal, R., & Shai, Y. (2011). Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIV-1 gp41. The FASEB Journal, 25, 2156–2166. doi: 10.1096/fj.10-175752
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041. doi: 10.1073/pnas.181342398
  • Barré-Sinoussi, F., Ross, A. L., & Delfraissy, J. F. (2013). Past, present and future: 30 years of HIV research. Nature Reviews Microbiology, 11, 877–883. doi: 10.1038/nrmicro3132
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56. doi: 10.1016/0010-4655(95)00042-E
  • Berger, E. A., Murphy, P. M., & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annual Review of Immunology, 17, 657–700. doi: 10.1146/annurev.immunol.17.1.657
  • Briggs, J. A., & Kräusslich, H. G. (2011). The molecular architecture of HIV. Journal of Molecular Biology, 410, 491–500. doi: 10.1016/j.jmb.2011.04.021
  • Brügger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F. T., & Kräusslich, H. G. (2006). The HIV lipidome: A raft with an unusual composition. Proceedings of the National Academy of Sciences of the United States of America, 103, 2641–2646. doi: 10.1073/pnas.0511136103
  • Cai, L., Gochin, M., & Liu, K. (2011). Biochemistry and biophysics of HIV-1 gp41 – Membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Current Topics in Medicinal Chemistry, 11, 2959–2984. doi: 10.2174/156802611798808497
  • Champagne, K., Shishido, A., & Root, M. J. (2009). Interactions of HIV-1 inhibitory peptide T20 with the gp41 N-HR coiled coil. The Journal of Biological Chemistry, 284, 3619–3627. doi: 10.1074/jbc.M809269200
  • Chan, D. C., Chutkowski, C. T., & Kim, P. S. (1998). Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proceedings of the National Academy of Sciences of the United States of America, 95, 15613–15617. doi: 10.1073/pnas.95.26.15613
  • Chan, D. C., Fass, D., Berger, J. M., & Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glycoprotein. Cell, 89, 263–273.
  • Checkley, M. A., Luttge, B. G., & Freed, E. O. (2011). HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. Journal of Molecular Biology, 410, 582–608. doi: 10.1016/j.jmb.2011.04.042
  • Cohen, M. S., Chen, Y. Q., McCauley, M., Gamble, T., Hosseinipour, M. C., Kumarasamy, N., … Fleming, T. R. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. New England Journal of Medicine, 365, 493–505. doi: 10.1056/NEJMoa1105243
  • Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: A sequence logo generator. Genome Research, 14, 1188–1190. doi: 10.1101/gr.849004
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092. doi: 10.1063/1.464397
  • DeGruttola, V., Smith, D. M., Little, S. J., & Miller, V. (2010). Developing and evaluating comprehensive HIV infection control strategies: Issues and challenges. Clinical Infectious Diseases, 50, S102–S107. doi: 10.1086/651480
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography, 60, 2126–2132. doi: 10.1107/S0907444904019158
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of coot. Acta Crystallographica. Section D, Biological Crystallography, 66, 486–501. doi: 10.1107/S0907444910007493
  • Esté, J. A., & Cihlar, T. (2010). Current status and challenges of antiretroviral research and therapy. Antiviral Research, 85, 25–33. doi: 10.1016/j.antiviral.2009.10.007
  • Fauci, A. S., & Marston, H. D. (2015). PUBLIC HEALTH. Toward an HIV vaccine: A scientific journey. Science (New York, N.Y.), 349, 386–387. doi: 10.1126/science.aac6300
  • Fiser, A., & Sali, A. (2003). Modeller: Generation and refinement of homology-based protein structure models. Methods in Enzymology, 374, 461–491. doi: 10.1016/S0076-6879(03)74020-8
  • Flanagan, C. A. (2014). Receptor conformation and constitutive activity in CCR5 chemokine receptor function and HIV infection. Advances in Pharmacology, 70, 215–263.
  • Flexner, C. (2007). HIV drug development: The next 25 years. Nature Reviews Drug Discovery, 6, 959–966. doi: 10.1038/nrd2336
  • Gangupomu, V. K., & Abrams, C. F. (2010). All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics. Biophysical Journal, 99, 3438–3444. doi: 10.1016/j.bpj.2010.09.054
  • Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C. M., Michael, S. F., … Hahn, B. H. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397, 436–441. doi: 10.1038/17130
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461. doi: 10.1517/17460441.2015.1032936
  • Gilson, M. K., & Zhou, H. X. (2007). Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure, 36, 21–42. doi: 10.1146/annurev.biophys.36.040306.132550
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164. doi: 10.1093/bioinformatics/19.1.163
  • Goto, T., Nakai, M., & Ikuta, K. (1998). The life-cycle of human immunodeficiency virus type 1. Micron (Oxford, England : 1993), 29, 123–138.
  • Guttman, M., Kahn, M., Garcia, N. K., Hu, S. L., & Lee, K. K. (2012). Solution structure, conformational dynamics, and CD4-induced activation in full-length, glycosylated, monomeric HIV gp120. Journal of Virology, 86, 8750–8764. doi: 10.1128/JVI.07224-11
  • Hamburger, A. E., Kim, S., Welch, B. D., & Kay, M. S. (2005). Steric accessibility of the HIV-1 gp41 N-trimer region. Journal of Biological Chemistry, 280, 12567–12572. doi: 10.1074/jbc.M412770200
  • Harrison, S. C. (2005). Mechanism of membrane fusion by viral envelope proteins. Advances in Virus Research, 64, 231–261. doi: 10.1016/S0065-3527(05)64007-9
  • Harrison, S. C. (2008). Viral membrane fusion. Nature Structural & Molecular Biology, 15, 690–698. doi: 10.1038/nsmb.1456
  • Harrison, S. C. (2015). Viral membrane fusion. Virology, 479–480, 498–507. doi: 10.1016/j.virol.2015.03.043
  • He, Y., Cheng, J., Lu, H., Li, J., Hu, J., Qi, Z., … Dai, Q. (2008). Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proceedings of the National Academy of Sciences of the United States of America, 105, 16332–16337. doi: 10.1073/pnas.0807335105
  • Hemelaar, J. (2012). The origin and diversity of the HIV-1 pandemic. Trends in Molecular Medicine, 18, 182–192. doi: 10.1016/j.molmed.2011.12.001
  • Higo, J., Ito, N., Kuroda, M., Ono, S., Nakajima, N., & Nakamura, H. (2001). Energy landscape of a peptide consisting of alpha-helix, 3(10)-helix, beta-turn, beta-hairpin, and other disordered conformations. Protein Science, 10, 1160–1171. doi: 10.1110/ps.44901
  • Hildinger, M., Dittmar, M. T., Schult-Dietrich, P., Fehse, B., Schnierle, B. S., Thaler, S., … von Laer, D. (2001). Membrane-anchored peptide inhibits human immunodeficiency virus entry. Journal of Virology, 75, 3038–3042. doi: 10.1128/JVI.75.6.3038-3042.2001
  • Jessen, H., Allen, T. M., & Streeck, H. (2014). How a single patient influenced HIV research-15-year follow-up . The New England Journal of Medicine, 370, 682–683. doi: 10.1056/NEJMc1308413
  • Kallings, L. O. (2008). The first postmodern pandemic: 25 years of HIV/ AIDS. Journal of Internal Medicine, 263, 218–243. doi: 10.1111/j.1365-2796.2007.01910.x
  • Kim, J. H., Hartley, T. L., Curran, A. R., & Engelman, D. M. (2009). Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. Biochimica et Biophysica Acta, 1788, 1804–1812. doi: 10.1016/j.bbamem.2009.06.011
  • Kuzembayeva, M., Dilley, K., Sardo, L., & Hu, W. S. (2014). Life of psi: How full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology, 454–455, 362–370. doi: 10.1016/j.virol.2014.01.019
  • Kwon, Y. D., Finzi, A., Wu, X., Dogo-Isonagie, C., Lee, L. K., Moore, L. R., … Kwong, P. D. (2012). Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proceedings of the National Academy of Sciences of the United States of America, 109, 5663–5668. doi: 10.1073/pnas.1112391109
  • Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., & Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393, 648–659. doi: 10.1038/31405
  • Lai, A. L., & Freed, J. H. (2014). HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophysical Journal, 106, 172–181. doi: 10.1016/j.bpj.2013.11.027
  • Lawless, M. K., Barney, S., Guthrie, K. I., Bucy, T. B., Petteway, S. R., Jr., & Merutka, G. (1996). HIV-1 membrane fusion mechanism: Structural studies of the interactions between biologically-active peptides from gp41. Biochemistry, 35, 13697–13708. doi: 10.1021/bi9606962
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78, 1950–1958. doi: 10.1002/prot.22711
  • Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., … Jiang, S. (2007). HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. Journal of Biological Chemistry, 282, 9612–9620. doi: 10.1074/jbc.M609148200
  • Lu, K., Heng, X., & Summers, M. F. (2011). Structural determinants and mechanism of HIV-1 genome packaging. Journal of Molecular Biology, 410, 609–633. doi: 10.1016/j.jmb.2011.04.029
  • Maartens, G., Celum, C., & Lewin, S. R. (2014). HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet, 384, 258–271. doi: 10.1016/S0140-6736(14)60164-1
  • Mascola, J. R. (2015). HIV. The modern era of HIV-1 vaccine development. Science (New York, N.Y.), 349, 139–140. doi: 10.1126/science.aac7800
  • Mathys, L., & Balzarini, J. (2015). Several N-glycans on the HIV envelope glycoprotein gp120 preferentially locate near disulphide bridges and are required for efficient infectivity and virus transmission. PLoS One, 10(6), e0130621. doi: 10.1371/journal.pone.0130621
  • McGillick, B. E., Balius, T. E., Mukherjee, S., & Rizzo, R. C. (2010). Origins of resistance to the HIVgp41 viral entry inhibitor T20. Biochemistry, 49, 3575–3592. doi: 10.1021/bi901915g
  • Melikyan, G. B. (2008). Common principles and intermediates of viral protein-mediated fusion: The HIV-1 paradigm. Retrovirology, 5, 111. doi: 10.1186/1742-4690-5-111
  • Menéndez-Arias, L. (2013). Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antiviral Research, 98, 93–120. doi: 10.1016/j.antiviral.2013.01.007
  • Merk, A., & Subramaniam, S. (2013). HIV-1 envelope glycoprotein structure. Current Opinion in Structural Biology, 23, 268–276. doi: 10.1016/j.sbi.2013.03.007
  • Miller, B. R., 3rd, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8, 3314–3321. doi: 10.1021/ct300418h
  • Moreno, M. R., Giudici, M., & Villalaín, J. (2006). The membranotropic regions of the endo and ecto domains of HIV gp41 envelope glycoprotein. Biochimca et Biophysica Acta, 1758, 111–123. doi: 10.1016/j.bbamem.2006.01.007
  • Moreno, M. R., Pascual, R., & Villalaín, J. (2004). Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan. Biochimca et Biophysica Acta, 1661, 105–197. doi: 10.1016/j.bbamem.2003.12.003
  • Muñoz-Barroso, I., Salzwedel, K., Hunter, E., & Blumenthal, R. (1999). Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. Journal of Virology, 73, 6089–6092.
  • Munro, J. B., & Mothes, W. (2015). Structure and Dynamics of the Native HIV-1 Env Trimer. Journal of Virology, 89, 5752–5755. doi: 10.1128/JVI.03187-14
  • Paillart, J. C., Shehu-Xhilaga, M., Marquet, R., & Mak, J. (2004). Dimerization of retroviral RNA genomes: An inseparable pair. Nature Reviews Microbiology, 2, 461–472. doi: 10.1038/nrmicro903
  • Pancera, M., Zhou, T., Druz, A., Georgiev, I. S., Soto, C., Gorman, J., … Kwong, P. D. (2014). Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 514, 455–461. doi: 10.1038/nature13808
  • Pascual, R., Moreno, M. R., & Villalaín, J. (2005). A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: Implications for the fusion mechanism. Journal of Virology, 79, 5142–5152. doi: 10.1128/JVI.79.8.5142-5152.2005
  • Peisajovich, S. G., Blank, L., Epand, R. F., Epand, R. M., & Shai, Y. (2003). On the interaction between gp41 and membranes: The immunodominant loop stabilizes gp41 helical hairpin conformation. Journal of Molecular Biology, 326, 1489–1501. doi: 10.1016/S0022-2836(03)00040-8
  • Peisajovich, S. G., Gallo, S. A., Blumenthal, R., & Shai, Y. (2003). C-terminal octylation rescues an inactive T20 mutant: Implications for the mechanism of HIV/SIMIAN immunodeficiency virus-induced membrane fusion. Journal of Biological Chemistry, 278, 21012–21017. doi: 10.1074/jbc.M212773200
  • Perrin, C., Fenouillet, E., & Jones, I. M. (1998). Role of gp41 glycosylation sites in the biological activity of human immunodeficiency virus type 1 envelope glycoprotein. Virology, 242, 338–345. doi: 10.1006/viro.1997.9016
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. doi: 10.1016/S0022-2836(63)80023-6
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31, 797–810. doi: 10.1002/jcc.21372
  • Reddy, M. R., Reddy, C. R., Rathore, R. S., Erion, M. D., Aparoy, P., Reddy, R. N., & Reddanna, P. (2014). Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Current Pharmaceutical Design, 20, 3323–3337. doi: 10.2174/13816128113199990604
  • Ruelas, D. S., & Greene, W. C. (2013). An integrated overview of HIV-1 latency. Cell, 155, 519–529. doi: 10.1016/j.cell.2013.09.044
  • Russell, R. S., Liang, C., & Wainberg, M. A. (2004). Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably?. Retrovirology, 1, 23.doi: 10.1186/1742-4690-1-23
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341. doi: 10.1016/0021-9991(77)90098-5
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815. doi: 10.1006/jmbi.1993.1626
  • Salzwedel, K., West, J. T., & Hunter, E. (1999). A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. Journal of Virology, 73, 2469–2480.
  • Schur, F. K., Hagen, W. J., Rumlová, M., Ruml, T., Müller, B., Kräusslich, H. G., & Briggs, J. A. (2015). Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature, 517, 505–508. doi: 10.1038/nature13838
  • Sharp, P. M., & Hahn, B. H. (2010). The evolution of HIV-1 and the origin of AIDS. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 2487–2494. doi: 10.1098/rstb.2010.0031
  • Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine, 1(1), a006841.doi: 10.1101/cshperspect.a006841
  • Shen, M. Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science, 15, 2507–2524. doi: 10.1110/ps.062416606
  • Smyth, R. P., Davenport, M. P., & Mak, J. (2012). The origin of genetic diversity in HIV-1. Virus Research, 169, 415–429. doi: 10.1016/j.virusres.2012.06.015
  • Stoica, I., Sadiq, S. K., & Coveney, P. V. (2008). Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Journal of the American Chemical Society, 130, 2639–2648. doi: 10.1021/ja0779250
  • Strockbine, B., & Rizzo, R. C. (2007). Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: Quantitative correlation with experiment. Proteins: Structure, Function, and Bioinformatics, 67, 630–642. doi: 10.1002/prot.21301
  • Sundquist, W. I., & Kräusslich, H. G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine, 2(7), a006924.doi: 10.1101/cshperspect.a006924
  • Tamm, L. K., Lee, J., & Liang, B. (2014). Capturing glimpses of an elusive HIV gp41 prehairpin fusion intermediate. Structure, 22, 1225–1226. doi: 10.1016/j.str.2014.08.010
  • Turner, B. G., & Summers, M. F. (1999). Structural biology of HIV. Journal of Molecular Biology, 285(1), 1–32. doi: 10.1006/jmbi.1998.2354
  • Vrahatis, M. N., Androulakis, G. S., Lambrinos, J. N., & Magoulas, G. D. (2000). A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 114, 367–386. doi: 10.1016/S0377-0427(99)00276-9
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87. doi: 10.3389/fmolb.2017.00087
  • Wexler-Cohen, Y., Johnson, B. T., Puri, A., Blumenthal, R., & Shai, Y. (2006). Structurally altered peptides reveal an important role for N-terminal heptad repeat binding and stability in the inhibitory action of HIV-1 peptide DP178. Journal of Biological Chemistry, 281, 9005–9010. doi: 10.1074/jbc.M512475200
  • Yuan, W., Craig, S., Si, Z., Farzan, M., & Sodroski, J. (2004). CD4-induced T-20 binding to human immunodeficiency virus type 1 gp120 blocks interaction with the CXCR4 coreceptor. Journal of Virology, 78, 5448–5457. doi: 10.1128/JVI.78.10.5448-5457.2004
  • Zhao, G., Perilla, J. R., Yufenyuy, E. L., Meng, X., Chen, B., Ning, J., … Zhang, P. (2013). Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature, 497, 643–646. doi: 10.1038/nature12162

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.