609
Views
33
CrossRef citations to date
0
Altmetric
Research Articles

Understanding co-loading of doxorubicin and camptothecin on graphene and folic acid-conjugated graphene for targeting drug delivery: classical MD simulation and DFT calculation

, & ORCID Icon
Pages 2737-2745 | Received 01 Jun 2019, Accepted 05 Jul 2019, Published online: 26 Jul 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. doi: 10.1016/j.softx.2015.06.001
  • Allen, M. P., & Tildesley, D. J. (2017). Computer simulation of liquids. United Kingdom, London: Oxford university press.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi: 10.1063/1.448118
  • Bianco, A., Kostarelos, K., & Prato, M. (2008). Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opinion on Drug Delivery, 5(3), 331–342. doi: 10.1517/17425247.5.3.331
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. doi: 10.1080/00268977000101561
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. doi: 10.1002/jcc.21287
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi: 10.1063/1.2408420
  • Dehneshin, N., Raissi, H., Hasanzade, Z., & Farzad, F. (2019). Using molecular dynamics simulation to explore the binding of the three potent anticancer drugs sorafenib, streptozotocin, and sunitinib to functionalized carbon nanotubes. Journal of Molecular Modeling, 25(6), 159. doi: 10.1007/s00894-019-4024-5
  • Depan, D., Shah, J., & Misra, R. D. K. (2011). Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Materials Science and Engineering: C, 31(7), 1305–1312. doi: 10.1016/j.msec.2011.04.010
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R. … Millam, J.M.. (2003). Gaussian 03, revision C. 02 (or D. 01). Pittsburgh: Gaussian Inc.
  • Hasanzade, Z., & Raissi, H. (2017). Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: A molecular dynamics simulation study. Journal of Molecular Modeling, 23(2), 36. doi: 10.1007/s00894-017-3207-1
  • Hasanzade, Z., & Raissi, H. (2019a). Assessment of the chitosan-functionalized graphene oxide as a carrier for loading thioguanine, an antitumor drug and effect of urea on adsorption process: Combination of DFT computational and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 37(10), 2487–2497. doi: 10.1080/07391102.2018.1496140
  • Hasanzade, Z., & Raissi, H. (2019b). Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: A molecular dynamics and density functional approach. Journal of Biomolecular Structure and Dynamics, 1–11. doi: 10.1080/07391102.2019.1585951
  • Hashemzadeh, H., & Raissi, H. (2017). The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study. Journal of Molecular Modeling, 23(8), 222. doi: 10.1007/s00894-017-3391-z
  • Hashemzadeh, H., & Raissi, H. (2018). Covalent organic framework as smart and high efficient carrier for anticancer drug delivery: A DFT calculations and molecular dynamics simulation study. Journal of Physics D: Applied Physics, 51(34), 345401. doi: 10.1088/1361-6463/aad3e8
  • Hong, G., Diao, S., Antaris, A. L., & Dai, H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 115(19), 10816–10906. doi: 10.1021/acs.chemrev.5b00008
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi: 10.1016/0263-7855(96)00018-5
  • Jiang, W., Zhang, H., Wu, J., Zhai, G., Li, Z., Luan, Y., & Garg, S. (2018). CuS@ MOF-based well-designed quercetin delivery system for chemo–photothermal therapy. ACS Applied Materials & Interfaces, 10(40), 34513–34523. doi: 10.1021/acsami.8b13487
  • Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W., (2010). Revealing noncovalent interactions. Journal of the American Chemical Society, 132(18), 6498–6506. doi: 10.1021/ja100936w
  • Karnati, K. R., & Wang, Y. (2018). Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Physical Chemistry Chemical Physics, 20(14), 9389–9400. doi: 10.1039/C8CP00124C
  • Khorram, R., Raissi, H., & Morsali, A. (2017). Assessment of solvent effects on the interaction of Carmustine drug with the pristine and COOH-functionalized single-walled carbon nanotubes: A DFT perspective. Journal of Molecular Liquids, 240, 87–97. doi: 10.1016/j.molliq.2017.05.035
  • Lázaro, I. A., Lázaro, S. A., & Forgan, R. S. (2018). Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chemical Communications, 54(22), 2792–2795. doi: 10.1039/C7CC09739E
  • Lefebvre, C., Rubez, G., Khartabil, H., Boisson, J.-C., Contreras-García, J., & Hénon, E. (2017). Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Physical Chemistry Chemical Physics, 19(27), 17928–17936. doi: 10.1039/C7CP02110K
  • Lim, D.-J., Sim, M., Oh, L., Lim, K., & Park, H. (2014). Carbon-based drug delivery carriers for cancer therapy. Archives of Pharmacal Research, 37(1), 43–52. doi: 10.1007/s12272-013-0277-1
  • Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia, 9(12), 9243–9257. doi: 10.1016/j.actbio.2013.08.016
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. doi: 10.1002/jcc.22885
  • Lv, Y., Tao, L., Bligh, S. W. A., Yang, H., Pan, Q., & Zhu, L. (2016). Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Materials Science and Engineering: C, 59, 652–660. doi: 10.1016/j.msec.2015.10.065
  • Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751. doi: 10.1038/nnano.2007.387
  • Qin, X. C., Guo, Z. Y., Liu, Z. M., Zhang, W., Wan, M. M., & Yang, B. W. (2013). Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Journal of Photochemistry and Photobiology B: Biology, 120, 156–162. doi: 10.1016/j.jphotobiol.2012.12.005
  • Saberinasab, A., Raissi, H., & Hashemzadeh, H. (2019). Understanding the effect of vitamin B6 and PEG functionalization on improving the performance of carbon nanotubes in temozolomide anticancer drug transportation. Journal of Physics D: Applied Physics.
  • Shahabi, M., & Raissi, H. (2018a). Assessment of solvent effects on the inclusion behavior of pyrazinamide drug into cyclic peptide based nanotubes as novel drug delivery vehicles. Journal of Molecular Liquids, 268, 326–334. doi: 10.1016/j.molliq.2018.07.064
  • Shahabi, M., & Raissi, H. (2018b). Comprehensive theoretical prediction of the dynamics and stability properties of Tegafur pharmaceutical agent on the Graphene based nanostructures in aqueous environment. Applied Surface Science, 455, 32. doi: 10.1016/j.apsusc.2018.05.168
  • Shaki, H., Raissi, H., Mollania, F., & Hashemzadeh, H. (2019). Modeling the interaction between anti-cancer drug penicillamine and pristine and functionalized carbon nanotubes for medical applications: Density functional theory investigation and a molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–13. doi: 10.1080/07391102.2019.1602080
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T. … (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 8(27), 3172–3191. doi: 10.1039/b517914a
  • Stella, B., Arpicco, S., Peracchia, M. T., Desmaële, D., Hoebeke, J., Renoir, M., … Couvreur, P. (2000). Design of folic acid-conjugated nanoparticles for drug targeting. Journal of Pharmaceutical Sciences, 89(11), 1452–1464. doi: 10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P
  • Sun, H., She, P., Lu, G., Xu, K., Zhang, W., & Liu, Z. (2014). Recent advances in the development of functionalized carbon nanotubes: A versatile vector for drug delivery. Journal of Materials Science, 49(20), 6845–6854. doi: 10.1007/s10853-014-8436-4
  • Thomas, C. J., Rahier, N. J., & Hecht, S. M. (2004). Camptothecin: Current perspectives. Bioorganic & Medicinal Chemistry, 12(7), 1585–1604. doi: 10.1016/j.bmc.2003.11.036
  • Vovusha, H., Banerjee, D., Yadav, M. K., Perrozzi, F., Ottaviano, L., Sanyal, S., & Sanyal, B. (2018). Binding characteristics of anticancer drug doxorubicin with two-dimensional graphene and graphene oxide: Insights from density functional theory calculations and fluorescence spectroscopy. The Journal of Physical Chemistry C, 122(36), 21031–21038. doi: 10.1021/acs.jpcc.8b04496
  • Wen, H., Dong, C., Dong, H., Shen, A., Xia, W., Cai, X., … Shi, D. (2012). Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 8(5), 760–769. doi: 10.1002/smll.201101613
  • Xu, H., Fan, M., Elhissi, A. M. A., Zhang, Z., Wan, K.-W., Ahmed, W., … Sun, X. (2015). PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine, 10(8), 1247–1262. doi: 10.2217/nnm.14.233
  • Yang, H., Bremner, D. H., Tao, L., Li, H., Hu, J., & Zhu, L. (2016). Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydrate Polymers, 135, 72–78.
  • Zaboli, M., & Raissi, H. (2018). A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6, 7] urils: Analysis of electronic structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 647–658. doi: 10.1016/j.saa.2017.07.058
  • Zhang, D., Zhang, J., Li, Q., Tian, H., Zhang, N., Li, Z., & Luan, Y. (2018). pH-and enzyme-sensitive IR820–paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo–photothermal therapy. ACS Applied Materials & Interfaces, 10(36), 30092–30102. doi: 10.1021/acsami.8b09098
  • Zhang, H., Li, Q., Liu, R., Zhang, X., Li, Z., & Luan, Y. (2018). A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: A case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy. Advanced Functional Materials, 28(35), 1802830. doi: 10.1002/adfm.201802830
  • Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6(4), 537–544. doi: 10.1002/smll.200901680
  • Zhou, T., Zhou, X., & Xing, D. (2014). Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials, 35(13), 4185–4194. doi: 10.1016/j.biomaterials.2014.01.044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.