268
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles

, , , &
Pages 2945-2954 | Received 14 Jun 2019, Accepted 22 Jul 2019, Published online: 08 Aug 2019

References

  • Abakumov, M. A. , Semkina, A. S. , Skorikov, A. S. , Vishnevskiy, D. A. , Ivanova, A. V. , Mironova, E. , … Chekhonin, V. P. (2018). Toxicity of iron oxide nanoparticles: Size and coating effects. Journal of Biochemical and Molecular Toxicology , 32 (12), e22225. doi: 10.1002/jbt.22225
  • Akkermans, R. L. , Spenley, N. A. , & Robertson, S. H. (2013). Monte Carlo methods in materials studio. Molecular Simulation , 39 (14–15), 1153–1164. doi: 10.1080/08927022.2013.843775
  • Aliahmad, M. , & Moghaddam, N. N. (2013). Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Materials Science-Poland , 31 (2), 264–268. doi: 10.2478/s13536-012-0100-6
  • Amiri, F. , Moradian, F. , & Rafiei, A. (2015). Anticancer effect of lactoferrin on gastric cancer cell line AGS. Research in Molecular Medicine , 3 , 11–16.
  • Bischoff, F. , Mathieu, K. , Vargas, J. , Pang, L. , Kulp, A. , Dewing, A. , … Zhang, M. (2019). Abstract P6-01-05: Detection of HER2 positive tumor cells using functionalized iron oxide nanoparticles . AACR.
  • Calero, M. , Chiappi, M. , Lazaro-Carrillo, A. , Rodríguez, M. J. , Chichón, F. J. , Crosbie-Staunton, K. , … Carrascosa, J. L. (2015). Characterization of interaction of magnetic nanoparticles with breast cancer cells. Journal of Nanobiotechnology , 13 (1), 16–20. doi: 10.1186/s12951-015-0073-9
  • Dar, M. I. , & Shivashankar, S. (2014). Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Advances , 4 (8), 4105–4113. doi: 10.1039/C3RA45457F
  • Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics , 113 (18), 7756–7764. doi: 10.1063/1.1316015
  • Falahati, M. , Attar, F. , Sharifi, M. , Haertlé, T. , Berret, J.-F. , Khan, R. H. , & Saboury, A. A. (2019). A health concern regarding the protein corona, aggregation and disaggregation. Biochimica et Biophysica Acta , 1863 (5), 971–991. doi: 10.1016/j.bbagen.2019.02.012
  • Hajsalimi, G. , Taheri, S. , Shahi, F. , Attar, F. , Ahmadi, H. , & Falahati, M. (2018). Interaction of iron nanoparticles with nervous system: An in vitro study. Journal of Biomolecular Structure and Dynamics , 36 (4), 928–937. doi: 10.1080/07391102.2017.1302819
  • Han, C. , Zhang, A. , Kong, Y. , Yu, N. , Xie, T. , Dou, B. , … Xu, K. (2019). Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta , 1067 , 115–128. doi: 10.1016/j.aca.2019.03.054
  • Itoh, H. , & Sugimoto, T. (2003). Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. Journal of Colloid and Interface Science , 265 (2), 283–295. doi: 10.1016/S0021-9797(03)00511-3
  • Jemal, A. , Center, M. M. , DeSantis, C. , & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology Biomarkers & Prevention , 19 (8), 1893–1907. doi: 10.1158/1055-9965.EPI-10-0437
  • Kaur, G. , Dogra, V. , Kumar, R. , Kumar, S. , & Singh, K. (2019). Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: Antioxidant activity, cellular, and genotoxicity toward Vitis vinifera . Journal of Biomolecular Structure and Dynamics , 37 (4), 892–909. doi: 10.1080/07391102.2018.1442251
  • Khandhar, A. , Keselman, P. , Kemp, S. , Ferguson, R. , Goodwill, P. , Conolly, S. , & Krishnan, K. (2017). Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale , 9 (3), 1299–1306. doi: 10.1039/C6NR08468K
  • Khorram, R. , Raissi, H. , Morsali, A. , & Shahabi, M. (2019). The computational study of the γ-Fe2O3 nanoparticle as Carmustine drug delivery system: DFT approach. Journal of Biomolecular Structure and Dynamics , 37 (2), 454–464. doi: 10.1080/07391102.2018.1429312
  • Knüchel, R. , Kiessling, F. , & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews , 138 , 302–325. doi: 10.1016/j.addr.2019.01.005
  • LaGrow, A. P. , Besenhard, M. O. , Hodzic, A. , Sergides, A. , Bogart, L. K. , Gavriilidis, A. , & Thanh, N. T. K. (2019). Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale , 11 (14), 6620–6628. doi: 10.1039/C9NR00531E
  • Laurent, S. , Dutz, S. , Hafeli, U. O. , & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science , 166 (1–2), 8–23. doi: 10.1016/j.cis.2011.04.003
  • Laurent, S. , Forge, D. , Port, M. , Roch, A. , Robic, C. , Vander Elst, L. , & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews , 108 (6), 2064–2110.
  • Li, L. , Nurunnabi, M. , Nafiujjaman, M. , Jeong, Y. Y. , Lee, Y-K. , & Huh, K. M. (2014). A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. Journal of Materials Chemistry B , 2 (19), 2929–2937. doi: 10.1039/c4tb00181h
  • Li, W. , Xue, B. , Shi, K. , Qu, Y. , Chu, B. , & Qian, Z. (2019). Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy. Applied Materials Today , 14 , 84–95. doi: 10.1016/j.apmt.2018.11.008
  • Liu, C. , Yang, B. , Chen, X. , Hu, Z. , Dai, Z. , Yang, D. , … Liu, Q. (2019). Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneously in-situ chemotherapy. Nanotechnology , 30 (28), 285706–285715.
  • Long, N. V. , Yang, Y. , Teranishi, T. , Thi, C. M. , Cao, Y. , & Nogami, M. (2015). Biomedical applications of advanced multifunctional magnetic nanoparticles. Journal of Nanoscience and Nanotechnology , 15 (12), 10091–10107. doi: 10.1166/jnn.2015.11691
  • Lönnerdal, B. , & Iyer, S. (1995). Lactoferrin: Molecular structure and biological function. Annual Review of Nutrition , 15 (1), 93–110. doi: 10.1146/annurev.nu.15.070195.000521
  • Mahdavi, M. , Ahmad, M. , Haron, M. , Namvar, F. , Nadi, B. , Rahman, M. , & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules , 18 (7), 7533–7548. doi: 10.3390/molecules18077533
  • Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics , 17 (2), 1247–1248. doi: 10.1109/TMAG.1981.1061188
  • Mascolo, M. , Pei, Y. , & Ring, T. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials , 6 (12), 5549–5567. doi: 10.3390/ma6125549
  • Mayo, S. L. , Olafson, B. D. , & Goddard, W. A. (1990). A generic force field for molecular simulations. The Journal of Physical Chemistry , 94 (26), 8897–8899. doi: 10.1021/j100389a010
  • Mirzaei, S. , Hadadi, Z. , Attar, F. , Mousavi, S. E. , Zargar, S. S. , Tajik, A. , … Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: Hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics , 36 (16), 4235–4245. doi: 10.1080/07391102.2017.1411832
  • Park, E.-J. , Umh, H. N. , Choi, D.-H. , Cho, M. H. , Choi, W. , Kim, S.-W. , … Kim, J.-H. (2014). Magnetite-and maghemite-induced different toxicity in murine alveolar macrophage cells. Archives of Toxicology , 88 (8), 1607–1618. doi: 10.1007/s00204-014-1210-1
  • Patil, R. M. , Thorat, N. D. , Shete, P. B. , Bedge, P. A. , Gavde, S. , Joshi, M. G. , … Bohara, R. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports , 13 , 63–72. doi: 10.1016/j.bbrep.2017.12.002
  • Patil, U. , Adireddy, S. , Jaiswal, A. , Mandava, S. , Lee, B. , & Chrisey, D. (2015). In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. International Journal of Molecular Sciences , 16 (10), 24417–24450. doi: 10.3390/ijms161024417
  • Poller, J. M. , Zaloga, J. , Schreiber, E. , Unterweger, H. , Janko, C. , Radon, P. , … Friedrich, R. P. (2017). Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. International Journal of Nanomedicine , 12 , 3207–3220. doi: 10.2147/IJN.S132369
  • Riss, T. L. , Moravec, R. A. , Niles, A. L. , Duellman, S. , Benink, H. A. , Worzella, T. J. , & Minor, L. (2016). Cell viability assays. Assay Guidance Manual [Internet] . Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  • Sameena, Y. , & Enoch, I. V. M. V. (2018). Interaction of a flavone loaded on surface-modified dextran-spooled superparamagnetic nanoparticles with β-cyclodextrin and DNA. Journal of Biomolecular Structure and Dynamics , 36 (7), 1908–1917. doi: 10.1080/07391102.2017.1337592
  • Scano, A. , Cabras, V. , Pilloni, M. , & Ennas, G. (2019). Microemulsions: The renaissance of ferrite nanoparticle synthesis. Journal of Nanoscience and Nanotechnology , 19 (8), 4824–4838. doi: 10.1166/jnn.2019.16876
  • Shakil, M. , Hasan, M. , & Sarker, S. R. (2019). Iron oxide nanoparticles for breast cancer theranostics. Current Drug Metabolism , 1 , 1–10. doi: 10.2174/1389200220666181122105043
  • Sharifi, M. , Hosseinali, S. H. , Saboury, A. A. , Szegezdi, E. , & Falahati, M. (2019). Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release , 299 , 121–137. doi: 10.1016/j.jconrel.2019.02.007
  • Su, Y.-L. , Fang, J.-H. , Liao, C.-Y. , Lin, C.-T. , Li, Y.-T. , & Hu, S.-H. (2015). Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics , 5 (11), 1233–1239. doi: 10.7150/thno.12843
  • Tomitaka, A. , Arami, H. , Gandhi, S. , & Krishnan, K. M. (2015). Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale , 7 (40), 16890–16898. doi: 10.1039/C5NR02831K
  • Vangijzegem, T. , Stanicki, D. , & Laurent, S. (2019). Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opinion on Drug Delivery , 16 (1), 69–78. doi: 10.1080/17425247.2019.1554647
  • Wang, J. , Li, Q. , Ou, Y. , Han, Z. , Li, K. , Wang, P. , & Zhou, S. (2011). Inhibition of tumor growth by recombinant adenovirus containing human lactoferrin through inducing tumor cell apoptosis in mice bearing EMT6 breast cancer. Archives of Pharmacal Research , 34 (6), 987–995. doi: 10.1007/s12272-011-0616-z
  • Wu, Z.-G. , & Gao, J.-F. (2012). Synthesis of γ-Fe2O3 nanoparticles by homogeneous co-precipitation method. Micro & Nano Letters , 7 , 533–535. doi: 10.1049/mnl.2012.0310
  • Yarjanli, Z. , Ghaedi, K. , Esmaeili, A. , Rahgozar, S. , & Zarrabi, A. (2017). Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience , 18 (1), 51–55. doi: 10.1186/s12868-017-0369-9
  • Youlden, D. R. , Cramb, S. M. , Dunn, N. A. , Muller, J. M. , Pyke, C. M. , & Baade, P. D. (2012). The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality. Cancer Epidemiology , 36 (3), 237–248. doi: 10.1016/j.canep.2012.02.007
  • Zhang, Y. , Lima, C. F. , & Rodrigues, L. R. (2014). Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy. Nutrition Reviews , 72 (12), 763–773. doi: 10.1111/nure.12155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.