338
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis

, & ORCID Icon
Pages 3074-3086 | Received 19 Jun 2019, Accepted 25 Jul 2019, Published online: 12 Aug 2019

References

  • Aigner, T. , Zien, A. , Gehrsitz, A. , Gebhard, P. M. , & McKenna, L. (2001). Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis & Rheumatism , 44 (12), 2777–2789. doi:10.1002/1529-0131(200112)44:12<2777::AID-ART465>3.0.CO;2-H
  • Au, L. , Koudijs, K. K. M. , Terwisscha van Scheltinga, A. G. T. , & Guchelaar, H. J. (2019). Non-cancer drug repurposing candidates for renal cell carcinoma. Cancer Journal , 25 (2), 147–148. doi:10.1097/PPO.0000000000000364
  • Balasundaram, P. , Kanagavelu, R. , James, N. , Maiti, S. , Veerappapillai, S. , & Karuppaswamy, R. (2019). Implementation of a pipeline using disease-disease associations for computational drug repurposing. Methods in Molecular Biology , 1903 , 129–148. doi:10.1007/978-1-4939-8955-3_8
  • Bariotto-Dos-Santos, K. , Padovan-Neto, F. E. , Bortolanza, M. , Dos-Santos-Pereira, M. , Raisman-Vozari, R. , Tumas, V. , & Del Bel, E. (2019). Repurposing an established drug: An emerging role for methylene blue in L-DOPA-induced dyskinesia. European Journal of Neuroscience , 49 (6), 869–882. doi:10.1111/ejn.14079
  • Bento, A. P. , Gaulton, A. , Hersey, A. , Bellis, L. J. , Chambers, J. , Davies, M. , … Overington, J. P. (2014). The ChEMBL bioactivity database: An update. Nucleic Acids Research , 42 (D1), D1083–1090. doi:10.1093/nar/gkt1031
  • Berman, H. M. , Westbrook, J. , Feng, Z. , Gilliland, G. , Bhat, T. N. , Weissig, H. , … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research , 28 (1), 235–242. doi:10.1093/nar/28.1.235
  • Brandsdal, B. O. , Osterberg, F. , Almlof, M. , Feierberg, I. , Luzhkov, V. B. , & Aqvist, J. (2003). Free energy calculations and ligand binding. Advance in Protein Chemistry , 66 , 123–158. doi:10.1016/S0065-3233(03)66004-3
  • Breckenridge, A. , & Jacob, R. (2019). Overcoming the legal and regulatory barriers to drug repurposing. Nature Reviews. Drug Discovery , 18 (1), 1–2. doi:10.1038/nrd.2018.92
  • Carregal, A. P. , Maciel, F. V. , Carregal, J. B. , Dos Reis Santos, B. , da Silva, A. M. , & Taranto, A. G. (2017). Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database. Journal of Molecular Modeling , 23 (4), 111.doi:10.1007/s00894-017-3253-8
  • Corsello, S. M. , Bittker, J. A. , Liu, Z. , Gould, J. , McCarren, P. , Hirschman, J. E. , … Golub, T. R. (2017). The Drug Repurposing Hub: A next-generation drug library and information resource. Nature Medicine , 23 (4), 405–408. doi:10.1038/nm.4306
  • Curran, S. , & Murray, G. I. (1999). Matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology , 189 (3), 300–308. doi:10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
  • Curran, S. , & Murray, G. I. (2000). Matrix metalloproteinases: Molecular aspects of their roles in tumour invasion and metastasis. European Journal of Cancer , 36 (13), 1621–1630. Spec No), doi:10.1016/S0959-8049(00)00156-8
  • Dandu, K. , Kallamadi, P. R. , Thakur, S. S. , & Rao, C. M. (2019). Drug repurposing for retinoblastoma: Recent advances. Current Topics in Medicinal Chemistry . doi:10.2174/1568026619666190119152706
  • Farha, M. A. , & Brown, E. D. (2019). Drug repurposing for antimicrobial discovery. Nature Microbiology , 4 (4), 565–577. doi:10.1038/s41564-019-0357-1
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters , 27 (8), 861–874. doi:10.1016/j.patrec.2005.10.010
  • Garcia-Serradilla, M. , Risco, C. , & Pacheco, B. (2019). Drug repurposing for new, efficient, broad spectrum antivirals. Virus Research , 264 , 22–31. doi:10.1016/j.virusres.2019.02.011
  • Gasparini, F. , & Di Paolo, T. (2019). Drug repurposing: Old drugs, new tricks to fast track drug development for the brain. Neuropharmacology , 147 , 1–3. doi:10.1016/j.neuropharm.2019.01.009
  • Gayvert, K. , & Elemento, O. (2019). Drug-induced expression-based computational repurposing of small molecules affecting transcription factor activity. Methods in Molecular Biology , 1903 , 179–184. doi:10.1007/978-1-4939-8955-3_10
  • Gazerani, P. (2019). Identification of novel analgesics through a drug repurposing strategy.  Pain Management , 9 (4), 399–415. doi:10.2217/pmt-2018-0091
  • Gege, C. , Bao, B. , Bluhm, H. , Boer, J. , Gallagher, B. M. , Korniski, B. , … Baragi, V. M. (2012). Discovery and evaluation of a non-Zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. Journal of Medicinal Chemistry , 55 (2), 709–716. doi:10.1021/jm201152u
  • Gns, H. S. , Gr, S. , Murahari, M. , & Krishnamurthy, M. (2019). An update on Drug Repurposing: Re-written saga of the drug's fate. Biomedicine & Pharmacotherapy , 110 , 700–716. doi:10.1016/j.biopha.2018.11.127
  • Golub, L. M. , Ramamurthy, N. S. , Llavaneras, A. , Ryan, M. E. , Lee, H. M. , Liu, Y. , … Sorsa, T. (1999). A chemically modified nonantimicrobial tetracycline (CMT-8) inhibits gingival matrix metalloproteinases, periodontal breakdown, and extra-oral bone loss in ovariectomized rats. Annals of the New York Academy of Sciences , 878 , 290–310. doi:10.1111/j.1749-6632.1999.tb07691.x
  • Grenier, L. , & Hu, P. (2019). Computational drug repurposing for inflammatory bowel disease using genetic information. Computational and Structural Biotechnology Journal , 17 , 127–135. doi:10.1016/j.csbj.2019.01.001
  • Hevener, K. E. , Zhao, W. , Ball, D. M. , Babaoglu, K. , Qi, J. , White, S. W. , & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling , 49 (2), 444–460. doi:10.1021/ci800293n
  • Hou, J. , Zou, Q. , Wang, Y. , Gao, Q. , Yao, W. , Yao, Q. , & Zhang, J. (2019). Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation. Journal of Biomolecular Structure and Dynamics , 37 (12), 3135–3149. doi:10.1080/07391102.2018.1509019
  • Hunter, D. J. (2011). Pharmacologic therapy for osteoarthritis-the era of disease modification. Nature Reviews. Rheumatology , 7 (1), 13–22. doi:10.1038/nrrheum.2010.178
  • Jana, S. , & Singh, S. K. (2019). Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. Journal of Biomolecular Structure and Dynamics , 37 (4), 944–965. doi:10.1080/07391102.2018.1444510
  • Johnson, A. R. , Pavlovsky, A. G. , Ortwine, D. F. , Prior, F. , Man, C.-F. , Bornemeier, D. A. , … Dyer, R. D. (2007). Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. Journal of Biological Chemistry , 282 (38), 27781–27791. doi:10.1074/jbc.M703286200
  • Karatzas, E. , Kolios, G. , & Spyrou, G. M. (2019). An application of computational drug repurposing based on transcriptomic signatures. Methods in Molecular Biology , 1903 , 149–177. doi:10.1007/978-1-4939-8955-3_9
  • Kevorkian, L. , Young, D. A. , Darrah, C. , Donell, S. T. , Shepstone, L. , Porter, S. , … Clark, I. M. (2004). Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis & Rheumatism , 50 (1), 131–141. doi:10.1002/art.11433
  • Kraus, V. B. , Simon, L. S. , Katz, J. N. , Neogi, T. , Hunter, D. , Guermazi, A. , & Karsdal, M. A. (2019). Proposed study designs for approval based on a surrogate endpoint and a post-marketing confirmatory study under FDA's accelerated approval regulations for disease modifying osteoarthritis drugs. Osteoarthritis and Cartilage , 27 (4), 571–579. doi:10.1016/j.joca.2018.11.002
  • Kuang, Z. , Bao, Y. , Thomson, J. , Caldwell, M. , Peissig, P. , Stewart, R. , … Page, D. (2019). A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regularization. Methods in Molecular Biology , 1903 , 255–267. doi:10.1007/978-1-4939-8955-3_15
  • Kuenzi, B. M. , Remsing Rix, L. L. , Kinose, F. , Kroeger, J. L. , Lancet, J. E. , Padron, E. , & Rix, U. (2019). Off-target based drug repurposing opportunities for tivantinib in acute myeloid leukemia. Scientific Reports , 9 (1), 606. doi:10.1038/s41598-018-37174-6
  • Lago, S. G. , & Bahn, S. (2019). Clinical trials and therapeutic rationale for drug repurposing in schizophrenia. ACS Chemical Neuroscience , 10 (1), 58–78. doi:10.1021/acschemneuro.8b00205
  • Li, B. , Hu, L. , Xue, Y. , Yang, M. , Huang, L. , Zhang, Z. , … Deng, G. (2019). Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches. Journal of Biomolecular Structure and Dynamics , 37 (10), 2627–2640. doi:10.1080/07391102.2018.1492460
  • Li, H. , Wang, D. , Yuan, Y. , & Min, J. (2017). New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Research & Therapy , 19 (1), 248. doi:10.1186/s13075-017-1454-2
  • Li, N.-G. , Shi, Z.-H. , Tang, Y.-P. , Wang, Z.-J. , Song, S.-L. , Qian, L.-H. , … Duan, J.-A. (2011). New hope for the treatment of osteoarthritis through selective inhibition of MMP-13. Current Medicinal Chemistry , 18 (7), 977–1001. doi:10.2174/092986711794940905
  • Liu, J. , Zhu, Y. , He, Y. , Zhu, H. , Gao, Y. , Li, Z. , … Li, W. (2019). Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. Journal of Biomolecular Structure and Dynamics , 1–15. doi:10.1080/07391102.2019.1590241
  • Liu, M. , Landuyt, B. , Klaassen, H. , Geldhof, P. , & Luyten, W. (2019). Screening of a drug repurposing library with a nematode motility assay identifies promising anthelmintic hits against Cooperia oncophora and other ruminant parasites. Veterinary Parasitology , 265 , 15–18. doi:10.1016/j.vetpar.2018.11.014
  • Lohmander, L. S. , & Roos, E. M. (2019). Disease modification in OA - will we ever get there?. Nature Reviews. Rheumatology , 15 (3), 133–135. doi:10.1038/s41584-019-0174-1
  • MedCalc Statistical Software version 16.4.3 (MedCalc Software bvba, O., Belgium; https://www.medcalc.org; 2016). (Version MedCalc v 16.4.3). Belgium.
  • Mengshol, J. A. , Mix, K. S. , & Brinckerhoff, C. E. (2002). Matrix metalloproteinases as therapeutic targets in arthritic diseases: Bull's-eye or missing the mark? Arthritis and Rheumatism , 46 (1), 13–20. doi:10.1002/1529-0131(200201)46:1&lt;13::aid-art497&gt;3.0.co;2-s
  • Miner, K. , Labitzke, K. , Liu, B. , Wang, P. , Henckels, K. , Gaida, K. , …., Sullivan, J. K. (2019). Drug repurposing: The anthelmintics niclosamide and nitazoxanide are potent TMEM16A antagonists that fully bronchodilate airways. Frontiers in Pharmacology , 10 , 51. doi:10.3389/fphar.2019.00051
  • Miro-Canturri, A. , Ayerbe-Algaba, R. , & Smani, Y. (2019). Drug repurposing for the treatment of bacterial and fungal infections. Frontiers in Microbiology , 10 , 41. doi:10.3389/fmicb.2019.00041
  • Morris, G. M. , Huey, R. , Lindstrom, W. , Sanner, M. F. , Belew, R. K. , Goodsell, D. S. , & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry , 30 (16), 2785–2791. doi:10.1002/jcc.21256
  • Murphy, G. , & Lee, M. H. (2005). What are the roles of metalloproteinases in cartilage and bone damage? Annals of the Rheumatic Diseases , 64 (Suppl 4), iv44–47. doi:10.1136/ard.2005.042465
  • Murray, G. I. (2001). Matrix metalloproteinases: A multifunctional group of molecules. Journal of Pathology , 195 (2), 135–137. doi:10.1002/1096-9896(200109)195:2&lt;135::AID-PATH939&gt;3.0.CO;2-G
  • Nascimento, A. C. A. , Prudencio, R. B. C. , & Costa, I. G. (2019). A drug-target network-based supervised machine learning repurposing method allowing the use of multiple heterogeneous information sources. Methods in Molecular Biology , 1903 , 281–289. doi:10.1007/978-1-4939-8955-3_17
  • Neuberger, A. , Oraiopoulos, N. , & Drakeman, D. L. (2019). Renovation as innovation: Is repurposing the future of drug discovery research? Drug Discovery Today , 24 (1), 1–3. doi:10.1016/j.drudis.2018.06.012
  • Nowak-Sliwinska, P. , Scapozza, L. , & Altaba, A. R. I. (2019). Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et Biophysica Acta 1871, 434–454. doi:10.1016/j.bbcan.2019.04.005
  • O'Boyle, N. M. , Banck, M. , James, C. A. , Morley, C. , Vandermeersch, T. , & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics , 3 , 33. doi:10.1186/1758-2946-3-33
  • Pazhayam, N. M. , Chhibber-Goel, J. , & Sharma, A. (2019). New leads for drug repurposing against malaria. Drug Discovery Today , 24 (1), 263–271. doi:10.1016/j.drudis.2018.08.006
  • Piecha, D. , Weik, J. , Kheil, H. , Becher, G. , Timmermann, A. , Jaworski, A. , … Hofmann, M. W. (2010). Novel selective MMP-13 inhibitors reduce collagen degradation in bovine articular and human osteoarthritis cartilage explants. Inflammation Research , 59 (5), 379–389. doi:10.1007/s00011-009-0112-9
  • Pizzorno, A. , Padey, B. , Terrier, O. , & Rosa-Calatrava, M. (2019). Drug repurposing approaches for the treatment of influenza viral infection: Reviving old drugs to fight against a long-lived enemy. Frontiers in Immunology , 10 , 531. doi:10.3389/fimmu.2019.00531
  • Polamreddy, P. , & Gattu, N. (2019). The drug repurposing landscape from 2012 to 2017: Evolution, challenges, and possible solutions. Drug Discovery Today , 24 (3), 789–795. doi:10.1016/j.drudis.2018.11.022
  • Poole, A. R. , Nelson, F. , Dahlberg, L. , Tchetina, E. , Kobayashi, M. , Yasuda, T. , … Billinghurst, R. C. (2003). Proteolysis of the collagen fibril in osteoarthritis. Biochemical Society Symposium , 70 , 115–123. doi:10.1042/bss0700115
  • Pradiba, D. , Aarthy, M. , Shunmugapriya, V. , Singh, S. K. , & Vasanthi, M. (2018). Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. Journal of Biomolecular Structure and Dynamics , 36 (14), 3718–3739. doi:10.1080/07391102.2017.1397058
  • Regulska, K. , Regulski, M. , Karolak, B. , Murias, M. , & Stanisz, B. (2019). Can cardiovascular drugs support cancer treatment? The rationale for drug repurposing. Drug Discovery Today , 24 (4), 1059–1065. doi:10.1016/j.drudis.2019.03.010
  • Roy, K. K. , & Saxena, A. K. (2011). Structural basis for the beta-adrenergic receptor subtype selectivity of the representative agonists and antagonists. Journal of Chemical Information and Modeling , 51 (6), 1405–1422. doi:10.1021/ci2000874
  • Saberian, N. , Peyvandipour, A. , Donato, M. , Ansari, S. , & Draghici, S. (2019). A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics. pii: btz156. doi:10.1093/bioinformatics/btz156
  • Salentin, S. , Schreiber, S. , Haupt, V. J. , Adasme, M. F. , & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research , 43 (W1), W443–447. doi:10.1093/nar/gkv315
  • Skiles, J. W. , Gonnella, N. C. , & Jeng, A. Y. (2001). The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Current Medicinal Chemistry , 8 (4), 425–474. doi:10.2174/0929867013373417
  • Skotnicki, J. S. , DiGrandi, M. J. , & Levin, J. I. (2003). Design strategies for the identification of MMP-13 and Tace inhibitors. Current Opinion in Drug Discovery & Development , 6 (5), 742–759.
  • Soria-Castro, R. , Schcolnik-Cabrera, A. , Rodríguez-López, G. , Campillo-Navarro, M. , Puebla-Osorio, N. , Estrada-Parra, S. , … Chávez-Blanco, A. D. (2019). Exploring the drug repurposing versatility of valproic acid as a multifunctional regulator of innate and adaptive immune cells. Journal of Immunology Research , 2019 , 1. doi:10.1155/2019/9678098
  • Sreekanth, G. P. , Panaampon, J. , Suttitheptumrong, A. , Chuncharunee, A. , Bootkunha, J. , Yenchitsomanus, P. T. , & Limjindaporn, T. (2019). Drug repurposing of N-acetyl cysteine as antiviral against dengue virus infection. Antiviral Research , 166 , 42–55. doi:10.1016/j.antiviral.2019.03.011
  • Stocker, W. , & Bode, W. (1995). Structural features of a superfamily of zinc-endopeptidases: The metzincins. Current Opinion in Structural Biology , 5 (3), 383–390.
  • Stocker, W. , Grams, F. , Baumann, U. , Reinemer, P. , Gomis-Ruth, F. X. , McKay, D. B. , & Bode, W. (1995). The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science , 4 (5), 823–840. doi:10.1002/pro.5560040502
  • Sukhatme, V. V. , Ramalingam, S. S. , Ahmed, R. , & Sukhatme, V. P. (2019). Repurposing food and drug administration-approved drugs to promote antitumor immunity. The Cancer Journal , 25 (2), 88–99. doi:10.1097/PPO.0000000000000368
  • Sun, G. , Ba, C. L. , Gao, R. , Liu, W. , & Ji, Q. (2019). Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population. Bioscience Reports , 39 (2), pii: BSR20181346. doi:10.1042/BSR20181346
  • The PyMOL Molecular Graphics System. (2016). Version 2.0, Schrödinger, LLC.
  • Thompson, P. L. (2019). Colchicine in cardiovascular disease: Repurposing an ancient gout drug. Clinical Therapeutics , 41 (1), 8–10. doi:10.1016/j.clinthera.2018.11.014
  • Trott, O. , & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry , 31 (2), 455–461. doi:10.1002/jcc.21334
  • Udrescu, M. , & Udrescu, L. (2019). A drug repurposing method based on drug-drug interaction networks and using energy model layouts. Methods in Molecular Biology , 1903 , 185–201. doi:10.1007/978-1-4939-8955-3_11
  • Vincenti, M. P. , & Brinckerhoff, C. E. (2002). Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Research , 4 (3), 157–164.
  • Wakchaure, P. , Velayutham, R. , & Roy, K. K. (2019). Structure investigation, enrichment analysis and structure-based repurposing of FDA-approved drugs as inhibitors of BET-BRD4. Journal of Biomolecular Structure and Dynamics , 37(12), 3048-3057. doi:10.1080/07391102.2018.1507838
  • Wallace, A. C. , Laskowski, R. A. , & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection , 8 (2), 127–134. doi:10.1093/protein/8.2.127
  • Wan, Y. , Li, W. , Liao, Z. , Yan, M. , Chen, X. , & Tang, Z. (2018). Selective MMP-13 inhibitors: Promising agents for the therapy of Osteoarthritis. Current Medicinal Chemistry . doi:10.2174/0929867326666181217153118
  • Wang, L. , Berne, B. J. , & Friesner, R. A. (2012). On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities. Proceedings of the National Academy of Sciences , 109 (6), 1937–1942. doi:10.1073/pnas.1114017109
  • Wang, M. , Sampson, E. R. , Jin, H. , Li, J. , Ke, Q. H. , Im, H. J. , & Chen, D. (2013). MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Research & Therapy , 15 (1), R5. doi:10.1186/ar4133
  • Wang, Y. , Yang, L. , Hou, J. , Zou, Q. , Gao, Q. , Yao, W. , … Zhang, J. (2019). Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. Journal of Biomolecular Structure and Dynamics , 37 (3), 649–670. doi:10.1080/07391102.2018.1434833
  • Wang, Y. , Yella, J. , & Jegga, A. G. (2019). Transcriptomic data mining and repurposing for computational drug discovery. Methods in Molecular Biology (Clifton, N.J.) , 1903 , 73–95. doi:10.1007/978-1-4939-8955-3_5
  • Webb, B. J. , Brunner, A. , Lewis, J. , Ford, C. D. , & Lopansri, B. K. (2019). Repurposing an old drug for a new epidemic: Ursodeoxycholic acid to prevent recurrent Clostridioides difficile infection. Clinical Infectious Diseases , 68 (3), 498–500. doi:10.1093/cid/ciy568
  • Wernicke, D. , Seyfert, C. , Hinzmann, B. , & Gromnica-Ihle, E. (1996). Cloning of collagenase 3 from the synovial membrane and its expression in rheumatoid arthritis and osteoarthritis. Journal of Rheumatology , 23 (4), 590–595.
  • Yan, S. , Yue, Y. Z. , Zong, Y. , & Zeng, L. (2019). Tetramethylpyrazine improves postoperative tissue adhesion: A drug repurposing. Chinese Journal of Integrative Medicine , 25(7), 554-560. doi:10.1007/s11655-018-3021-3
  • Yang, X. , Huang, W. T. , Wu, H. Y. , He, R. Q. , Ma, J. , Liu, A. G. , & Chen, G. (2019). Novel drug candidate for the treatment of several soft tissue sarcoma histologic subtypes: A computational method using survival associated gene signatures for drug repurposing. Oncology Reports , 41 (4), 2241–2253. doi:10.3892/or.2019.7033
  • Yao, C. , Chen, B. , Kang, Z. , Liu, Y. , Qi, X. , & Wang, Q. (2019). Binding, selectivity and sequence recognition of matrix metalloproteinase-2 to oligopeptides. Journal of Biomolecular Structure and Dynamics , 1–8. doi:10.1080/07391102.2019.1578694
  • Zhang, X. , Selvaraju, K. , Saei, A. A. , D'Arcy, P. , Zubarev, R. A. , Arner, E. S. , & Linder, S. (2019). Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug. Biochimie , 162 , 46–54. doi:10.1016/j.biochi.2019.03.015
  • Zheng, S. , Ma, H. , Wang, J. , & Li, J. (2019). A computational bipartite graph-based drug repurposing method. Methods in Molecular Biology , 1903 , 115–127. doi:10.1007/978-1-4939-8955-3_7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.