251
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico-guided identification of potential inhibitors against β2m aggregation in dialysis-related amyloidosis

, , &
Pages 3927-3941 | Received 11 Jun 2019, Accepted 10 Sep 2019, Published online: 27 Sep 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., … Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. doi:10.1002/prot.340170408
  • Awasthi, M., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2016). Alzheimer's disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. Journal of the Neurological Sciences, 361, 256–271. doi:10.1016/j.jns.2016.01.008
  • Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., … Choi, I. (2016). Computer aided drug design: Success and limitations. Current Pharmaceutical Design, 22, 572–581. doi:10.2174/1381612822666151125000550
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 98(18), 10037–10041. doi:10.1073/pnas.181342398
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp 331–342). Dordrecht, Netherland: Reidel.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Berhanu, W. M., & Hansmann, U. H. E. (2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7(7), e41479.doi:10.1371/journal.pone.0041479
  • Berhanu, W. M., & Masunov, A. E. (2011). Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: Structural stability and thermodynamic of association. Biopolymers, 95(9), 573–590. doi:10.1002/bip.21611
  • Chandrasekaran, P., & Rajasekaran, R. (2016). A systematic molecular dynamics approach to the structural characterization of amyloid aggregation propensity of β2-microglobulin mutant D76N. Molecular Biosystems, 12, 850–859. doi:10.1039/C5MB00759C
  • Chiti, F. (2006). Relative importance of hydrophobicity, net charge, and secondary structure propensities in protein aggregation. In: V. N. Uversky & A. L. Fink (Eds.), Protein misfolding, aggregation, and conformational diseases (Vol. 4. pp 43–59). US: Springer.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In J. Hempel, C. Williams, & C. Hong (Eds.), Chemical biology: Vol. 1263. Methods in molecular biology (pp. 243–250). New York, NY: Humana Press.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • de Rosa, M., Barbiroli, A., Giorgetti, S., Mangione, P. P., Bolognesi, M., & Ricagno, S. (2015). Decoding the structural bases of D76N β2-microglobulin high amyloidogenicity through crystallography and Asn-scan mutagenesis. PLoS One, 10(12), e0144061. doi:10.1371/journal.pone.0144061
  • Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., … Ashburner, M. (2007). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36(Database), D344–D350. doi:10.1093/nar/gkm791
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific.
  • Eichner, T., & Radford, S. E. (2011). Understanding the complex mechanisms of β2-microglobulin amyloid assembly. The FEBS Journal, 278(20), 3868–3883. doi:10.1111/j.1742-4658.2011.08186.x
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Fang, P.-S., Zhao, J.-H., Liu, H.-L., Liu, K.-T., Chen, J.-T., Lin, H.-Y., … Fang, H.-W. (2009). Molecular dynamics simulations to gain insights into the stability and morphologies of K3 oligomers from β2-microglobulin. Journal of Biomolecular Structure and Dynamics, 26(5), 549–559. doi:10.1080/07391102.2009.10507270
  • Feng, Z., Chen, L., Maddula, H., Akcan, O., Oughtred, R., Berman, H. M., … Westbrook, J. (2004). Ligand Depot: A data warehouse for ligands bound to macromolecules. Bioinformatics, 20(13), 2153–2155. doi:10.1093/bioinformatics/bth214
  • Fogolari, F., Corazza, A., Varini, N., Rotter, M., Gumral, D., Codutti, L., … Esposito, G. (2011). Molecular dynamics simulation of β2‐microglobulin in denaturing and stabilizing conditions. Proteins: Structure, Function, and Bioinformatics, 79(3), 986–1001. doi:10.1002/prot.22940
  • Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., … Overington, J. P. (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100–D1107. doi:10.1093/nar/gkr777
  • Gejyo, F., Yamada, T., Odani, S., Nakagawa, Y., Arakawa, M., Kunitomo, T., … Schmid, K. (1985). A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochemical and Biophysical Research Communications, 129(3), 701–706. doi:10.1016/0006-291X(85)91948-5
  • Gorevic, P. D., Casey, T. T., Stone, W. J., DiRaimondo, C. R., Prelli, F. C., & Frangione, B. (1985). Beta-2 microglobulin is an amyloidogenic protein in man. Journal of Clinical Investigation, 76(6), 2425–2429. doi:10.1172/JCI112257
  • Goyal, D., Shuaib, S., Mann, S., & Goyal, B. (2017). Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Combinatorial Science, 19(2), 55–80. doi:10.1021/acscombsci.6b00116
  • Gupta, M. K., & Vadde, R. (2019). In silico identification of natural product inhibitors for γ‐secretase activating protein, a therapeutic target for Alzheimer's disease. Journal of Cellular Biochemistry, 120(6), 10323–10336. doi:10.1002/jcb.28316
  • Han, X., & He, G. (2018). Toward a rational design to regulate β-amyloid fibrillation for Alzheimer’s disease treatment. ACS Chemical Neuroscience, 9(2), 198–210. doi:10.1021/acschemneuro.7b00477
  • Hassan, M., Raza, H., Abbasi, M. A., Moustafa, A. A., & Seo, S.-Y. (2019). The exploration of novel Alzheimer’s therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomedicine & Pharmacotherapy, 109, 2513–2526. doi:10.1016/j.biopha.2018.11.115
  • Hassan, M., Shahzadi, S., Seo, S. Y., Alashwal, H., Zaki, N., & Moustafa, A. A. (2018). Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat Alzheimer's disease. Frontiers in Computational Neuroscience, 12, 34. doi:10.3389/fncom.2018.00034
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L
  • Hodkinson, J. P., Radford, S. E., & Ashcroft, A. E. (2012). The role of conformational flexibility in β2-microglobulin amyloid fibril formation at neutral pH. Rapid Communications in Mass Spectrometry, 26(16), 1783–1792. doi:10.1002/rcm.6282
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., & Radford, S. E. (2018). A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 19(12), 755–773. doi:10.1038/s41580-018-0060-8
  • Iadanza, M. G., Silvers, R., Boardman, J., Smith, H. I., Karamanos, T. K., Debelouchina, G. T., … Radford, S. E. (2018). The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 9(1), 4517. doi:10.1038/s41467-018-06761-6
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Genetics, 11(3), 205–217. doi:10.1002/prot.340110305
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC – A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. doi:10.1021/ci049714+
  • Iwata, K., Matsuura, T., Sakurai, K., Nakagawa, A., & Goto, Y. (2007). High-resolution crystal structure of β2-microglobulin formed at pH 7.0. Journal of Biochemistry, 142(3), 413–419. doi:10.1093/jb/mvm148
  • Jana, S., & Singh, S. K. (2019). Identification of human tau-tubulin kinase 1 inhibitors: An integrated e-pharmacophore-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–15 doi:10.1080/07391102.2019.1590242
  • Jones, S., Manning, J., Kad, N. M., & Radford, S. E. (2003). Amyloid-forming peptides from β2-microglobulin – Insights into the mechanism of fibril formation in vitro. Journal of Molecular Biology, 325(2), 249–257. doi:10.1016/S0022-2836(02)01227-5
  • Jones, S., Smith, D. P., & Radford, S. E. (2003). Role of the N and C-terminal strands of beta 2-microglobulin in amyloid formation at neutral pH. Journal of Molecular Biology, 330(5), 935–941. doi:10.1016/S0022-2836(03)00688-0
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Khalid, S., Zahid, M. A., Ali, H., Kim, Y. S., & Khan, S. (2018). Biaryl scaffold-focused virtual screening for anti-aggregatory and neuroprotective effects in Alzheimer’s disease. BMC Neuroscience, 19(1), 74. doi:10.1186/s12868-018-0472-6
  • Kim, K.-H., Kim, N. D., & Seong, B.-L. (2010). Pharmacophore-based virtual screening: A review of recent applications. Expert Opinion on Drug Discovery, 5(3), 205–222. doi:10.1517/17460441003592072
  • Knecht, V., Möhwald, H., & Lipowsky, R. (2007). Conformational diversity of the fibrillogenic fusion peptide B18 in different environments from molecular dynamics simulations. The Journal of Physical Chemistry B, 111(16), 4161–4170. doi:10.1021/jp0659204
  • Kozhukh, G. V., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H., & Goto, Y. (2002). Investigation of a peptide responsible for amyloid fibril formation of β2-microglobulin by Achromobacter protease I. Journal of Biological Chemistry, 277(2), 1310–1315. doi:10.1074/jbc.M108753200
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. doi:10.1021/ci500020m
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi:10.1021/ci200227u
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61(4), 704–721. doi:10.1002/prot.20660
  • Liang, C., Derreumaux, P., & Wei, G. (2007). Structure and aggregation mechanism of β2-microglobulin (83–99) peptides studied by molecular dynamics simulations. Biophysical Journal, 93(10), 3353–3362. doi:10.1529/biophysj.107.105585
  • Lin, Z., & van Gunsteren, W. F. (2013). Refinement of the application of the GROMOS 54A7 force field to β-peptides. Journal of Computational Chemistry, 34(32), 2796–2805. doi:10.1002/jcc.23459
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., … Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. doi:10.1021/ct200196m
  • Manoharan, P., & Ghoshal, N. (2018). Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. Journal of Biomolecular Structure and Dynamics, 36(7), 1878–1892. doi:10.1080/07391102.2017.1337590
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., … Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Narang, S. S., Shuaib, S., & Goyal, B. (2017). Molecular insights into the inhibitory mechanism of rifamycin SV against β2-microglobulin aggregation: A molecular dynamics simulation study. International Journal of Biological Macromolecules, 102, 1025–1034. doi:10.1016/j.ijbiomac.2017.04.086
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., … Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652–661. doi:10.1002/pro.2449
  • Patel, P., Parmar, K., Vyas, V. K., Patel, D., & Das, M. (2017). Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation. Journal of Molecular Graphics and Modelling, 77, 295–310. doi:10.1016/j.jmgm.2017.09.004
  • Platt, G. W., & Radford, S. E. (2009). Glimpses of the molecular mechanisms of β2-microglobulin fibril formation in vitro: Aggregation on a complex energy landscape. FEBS Letters, 583(16), 2623–2629. doi:10.1016/j.febslet.2009.05.005
  • Platt, G. W., Routledge, K. E., Homans, S. W., & Radford, S. E. (2008). Fibril growth kinetics reveal a region of β2-microglobulin important for nucleation and elongation of aggregation. Journal of Molecular Biology, 378(1), 251–263. doi:10.1016/j.jmb.2008.01.092
  • Radford, S. E., Gosal, W. S., & Platt, G. W. (2005). Towards an understanding of the structural molecular mechanism of β2-microglobulin amyloid formation in vitro. Biochimica et Biophysica Acta (Bba) - Proteins and Proteomics, 1753(1), 51–63. doi:10.1016/j.bbapap.2005.07.006
  • Richardson, J. S., & Richardson, D. C. (2002). Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 99(5), 2754–2759. doi:10.1073/pnas.052706099
  • Ryan, P., Patel, B., Makwana, V., Jadhav, H. R., Kiefel, M., Davey, A., … Kassiou, M. (2018). Peptides, peptidomimetics, and carbohydrate-peptide conjugates as amyloidogenic aggregation inhibitors for Alzheimer's disease. ACS Chemical Neuroscience, 9(7), 1530–1551. doi:10.1021/acschemneuro.8b00185
  • Saini, R. K., Shuaib, S., Goyal, D., & Goyal, B. (2018). Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 37, 3183–3197. doi:10.1080/07391102.2018.1511475
  • Scarpioni, R., Ricardi, M., Albertazzi, V., De Amicis, S., Rastelli, F., & Zerbini, L. (2016). Dialysis-related amyloidosis: Challenges and solutions. International Journal of Nephrology and Renovascular Disease, 9, 319–328. doi:10.2147/IJNRD.S84784
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. doi:10.1007/s00249-011-0700-9
  • Shukla, R., & Singh, T. R. (2019). Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1571947
  • Skora, L., Becker, S., & Zweckstetter, M. (2010). Molten globule precursor states are conformationally correlated to amyloid fibrils of human β-2-microglobulin. Journal of the American Chemical Society, 132(27), 9223–9225. doi:10.1021/ja100453e
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. doi:10.1021/ct200133y
  • Soto, C., & Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nature Neuroscience, 21(10), 1332–1340. doi:10.1038/s41593-018-0235-9
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Usmani, S. S., Bedi, G., Samuel, J. S., Singh, S., Kalra, S., Kumar, P., … Raghava, G. P. S. (2017). THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One, 12(7), e0181748. doi:10.1371/journal.pone.0181748
  • Valleix, S., Gillmore, J. D., Bridoux, F., Mangione, P. P., Dogan, A., Nedelec, B., … Bellotti, V. (2012). Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. New England Journal of Medicine, 366(24), 2276–2283. doi:10.1056/NEJMoa1201356
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., … Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(90001), D668–D672. doi:10.1093/nar/gkj067
  • Woods, L. A., Platt, G. W., Hellewell, A. L., Hewitt, E. W., Homans, S. W., Ashcroft, A. E., … Radford, S. E. (2011). Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nature Chemical Biology, 7(10), 730–739. doi:10.1038/nchembio.635
  • Yamaguchi, K., Takahashi, S., Kawai, T., Naiki, H., & Goto, Y. (2005). Seeding-dependent propagation and maturation of amyloid fibril conformation. Journal of Molecular Biology, 352(4), 952–960. doi:10.1016/j.jmb.2005.07.061
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56(8), 1399–1404. doi:10.1021/acs.jcim.6b00174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.