288
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Aminoacid substitutions in the glycine zipper affect the conformational stability of amyloid beta fibrils

, , , &
Pages 3908-3915 | Received 12 Jun 2019, Accepted 08 Sep 2019, Published online: 07 Oct 2019

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. doi:10.1016/j.softx.2015.06.001
  • Acosta, D. M. Á. V., Vega, B. C., Basurto, J. C., Morales, L. G. F., & Rosales Hernández, M. C. (2018). Recent advances by in silico and in vitro studies of amyloid-β 1-42 fibril depicted a S-shape conformation. International Journal of Molecular Sciences, 19(8), 2415. doi:10.3390/ijms19082415
  • Bartus, R. T. (2000). On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Experimental Neurology, 163(2), 495–529. doi:10.1006/exnr.2000.7397
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bidone, T. C., Kim, T., Deriu, M. A., Morbiducci, U., & Kamm, R. D. (2015). Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks. Biomechanics and Modeling in Mechanobiology, 14(5), 1143–1155. doi:10.1007/s10237-015-0660-6
  • Bosshard, H. R., Marti, D. N., & Jelesarov, I. (2004). Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition, 17(1), 1–16. doi:10.1002/jmr.657
  • Brender, J. R., Dürr, U. H. N., Heyl, D., Budarapu, M. B., & Ramamoorthy, A. (2007). Membrane fragmentation by an amyloidogenic fragment of human Islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes. Biochimica et Biophysica Acta (BBA) Biomembranes, 1768(9), 2026–2029. doi:10.1016/j.bbamem.2007.07.001
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420
  • Chien, Y.-T., Hwang, J.-K., & Huang, S.-W. (2012). On the relationship between residue solvent exposure and thermal fluctuations in proteins. In Protein structure. London: InTech. doi:10.5772/37148.
  • Chiti, F., Stefani, M., Taddei, N., Ramponi, G., & Dobson, C. M. (2003). Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 424(6950), 805–808. doi:10.1038/nature01891
  • Colvin, M. T., Silvers, R., Ni, Q. Z., Can, T. V., Sergeyev, I., Rosay, M., … Griffin, R. G. (2016). Atomic resolution structure of monomorphic Aβ 42 amyloid fibrils. Journal of the American Chemical Society, 138(30), 9663–9674. doi:10.1021/jacs.6b05129
  • Cummings, J. L. (2004). Alzheimer’s disease. New England Journal of Medicine, 351(1), 56–67. doi:10.1056/NEJMra040223
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089. doi:10.1063/1.464397
  • Deriu, M. A., Grasso, G., Tuszynski, J. A. J. A., Massai, D., Gallo, D., Morbiducci, U., & Danani, A. (2016). Characterization of the AXH domain of Ataxin-1 using enhanced sampling and functional mode analysis. Proteins: Structure, Function, and Bioinformatics, 84(5), 666–673. doi:10.1002/prot.25017
  • Evans, D. J., & Holian, B. L. (1985). The Nose–Hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. doi:10.1063/1.449071
  • Fändrich, M., Meinhardt, J., & Grigorieff, N. (2009). Structural polymorphism of Alzheimer A beta and other amyloid fibrils. Prion, 3(2), 89–93. doi:10.4161/pri.3.2.8859
  • Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6(2), 163–168. doi:10.1093/comjnl/6.2.163
  • Fonte, V., Dostal, V., Roberts, C. M., Gonzales, P., Lacor, P., Magrane, J., … Link, C. D. (2011). A glycine zipper motif mediates the formation of toxic β-amyloid oligomers in vitro and in vivo. Molecular Neurodegeneration, 6(1), 61. doi:10.1186/1750-1326-6-61
  • Grasso, G., Morbiducci, U., Massai, D., Tuszynski, J. A., Danani, A., & Deriu, M. A. (2018). Destabilizing the AXH tetramer by mutations: mechanisms and potential antiaggregation strategies. Biophysical Journal, 114(2), 323–330. doi:10.1016/j.bpj.2017.11.025
  • Grasso, G., Deriu, M. A., Tuszynski, J. A., Gallo, D., Morbiducci, U., & Danani, A. (2016). Conformational fluctuations of the AXH monomer of Ataxin-1. Proteins: Structure, Function, and Bioinformatics, 84(1), 52–59. doi:10.1002/prot.24954
  • Grasso, G., Rebella, M., Morbiducci, U., Tuszynski, J. A., Danani, A., & Deriu, M. A. (2019). The role of structural polymorphism in driving the mechanical performance of the Alzheimer’s beta amyloid fibrils. Frontiers in Bioengineering and Biotechnology, 7, 83. doi:10.3389/fbioe.2019.00083
  • Grasso, G., Rebella, M., Muscat, S., Morbiducci, U., Tuszynski, J., Danani, A., & Deriu, M. (2018). Conformational dynamics and stability of U-shaped and S-shaped amyloid β assemblies. International Journal of Molecular Sciences, 19(2), 571. doi:10.3390/ijms19020571
  • Gravina, S. A., Ho, L., Eckman, C. B., Long, K. E., Otvos, L., Younkin, L. H., … Younkin, S. G. (1995). Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). The Journal of Biological Chemistry, 270(13), 7013–7016. doi:10.1074/jbc.270.13.7013
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356. doi:10.1126/science.1072994
  • Harmeier, A., Wozny, C., Rost, B. R., Munter, L.-M., Hua, H., Georgiev, O., … Multhaup, G. (2009). Role of amyloid-beta glycine 33 in oligomerization, toxicity, and neuronal plasticity. Journal of Neuroscience, 29(23), 7582–7590. doi:10.1523/JNEUROSCI.1336-09.2009
  • Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32(Web Server), W500–W502. doi:10.1093/nar/gkh429
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hsu, F., Park, G., & Guo, Z. (2018). Key residues for the formation of Aβ42 amyloid fibrils. ACS Omega, 3(7), 8401–8407. doi:10.1021/acsomega.8b00887
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., … MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. doi:10.1038/nmeth.4067
  • Huet, A., & Derreumaux, P. (2006). Impact of the mutation A21G (Flemish variant) on Alzheimer’s β-amyloid dimers by molecular dynamics simulations. Biophysical Journal, 91(10), 3829–3840. doi:10.1529/biophysj.106.090993
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 27–28. doi:10.1016/0263-7855(96)00018-5
  • Hung, L. W., Ciccotosto, G. D., Giannakis, E., Tew, D. J., Perez, K., Masters, C. L., … Barnham, K. J. (2008). Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. Journal of Neuroscience, 28(46), 11950–11958. doi:10.1523/JNEUROSCI.3916-08.2008
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926. doi:10.1063/1.445869
  • Kim, S., Jeon, T.-J., Oberai, A., Yang, D., Schmidt, J. J., & Bowie, J. U. (2005). Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins. Proceedings of the National Academy of Sciences of United States of America, 102(40), 14278–14283. doi:10.1073/pnas.0501234102
  • Kung, V. M., Cornilescu, G., & Gellman, S. H. (2015). Impact of strand number on parallel β-sheet stability. Angewandte Chemie International Edition, 54(48), 14336–14339. doi:10.1002/anie.201506448
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. doi:10.1016/0022-2836(82)90515-0
  • Lee, H. J., Korshavn, K. J., Nam, Y., Kang, J., Paul, T. J., Kerr, R. A., … Lim, M. H. (2017). Structural and mechanistic insights into development of chemical tools to control individual and inter-related pathological features in Alzheimer’s disease. Chemistry - A European Journal, 23(11), 2706–2715. doi:10.1002/chem.201605401
  • Liu, W., Crocker, E., Zhang, W., Elliott, J. I., Luy, B., Li, H., … Smith, S. O. (2005). Structural role of glycine in amyloid fibrils formed from transmembrane α-helices. Biochemistry, 44(9), 3591–3597. doi:10.1021/bi047827g
  • Liu, Y., Ren, B., Zhang, Y., Sun, Y., Chang, Y., Liang, G., … Zheng, J. (2018). Molecular simulation aspects of amyloid peptides at membrane interface. Biochimica et Biophysica Acta - Biomembranes, 1860(9), 1906–1916. doi:10.1016/j.bbamem.2018.02.004.
  • Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., & Tycko, R. (2013). Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell, 154(6), 1257–1268. doi:10.1016/j.cell.2013.08.035
  • Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., … Riek, R. (2005). 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proceedings of the National Academy of Sciences of United States of America, 102(48), 17342–17347. doi:10.1073/pnas.0506723102
  • Mason, R. P., Jacob, R. F., Walter, M. F., Mason, P. E., Avdulov, N. A., Chochina, S. V., … Wood, W. G. (1999). Distribution and fluidizing action of soluble and aggregated amyloid β-peptide in rat synaptic plasma membranes. Journal of Biological Chemistry, 274(26), 18801–18807. doi:10.1074/jbc.274.26.18801
  • Mayer, M., Capone, R., Sauer, A. M., Bautista, M. R., Yang, J., Turner, R. S., … Quiroz, F. G. (2009). Amyloid-β-induced ion flux in artificial lipid bilayers and neuronal cells: Resolving a controversy. Neurotoxicity Research, 16(1), 1–13. doi:10.1007/s12640-009-9033-1
  • McLaurin, J., & Chakrabartty, A. (1997). Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes. European Journal of Biochemistry, 245(2), 355–363. doi:10.1111/j.1432-1033.1997.t01-2-00355.x
  • Munter, L.-M., Voigt, P., Harmeier, A., Kaden, D., Gottschalk, K. E., Weise, C., … Multhaup, G. (2007). GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. The EMBO Journal, 26(6), 1702–1712. doi:10.1038/sj.emboj.7601616
  • Ngo, S. T., Nguyen, M. T., Nguyen, N. T., & Vu, V. V. (2017). The effects of A21G mutation on transmembrane amyloid beta (11–40) trimer: An in silico study. The Journal of Physical Chemistry B, 121(36), 8467–8474. doi:10.1021/acs.jpcb.7b05906
  • Paravastu, A. K., Leapman, R. D., Yau, W.-M., & Tycko, R. (2008). Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proceedings of the National Academy of Sciences of United States of America, 105(47), 18349–18354. doi:10.1073/pnas.0806270105
  • Parton, D. L., Klingelhoefer, J. W., & Sansom, M. S. P. (2011). Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophysical Journal, 101(3), 691–699. doi:10.1016/j.bpj.2011.06.048
  • Perczel, A., Gáspári, Z., & Csizmadia, I. G. (2005). Structure and stability of β-pleated sheets. Journal of Computational Chemistry, 26(11), 1155–1168. doi:10.1002/jcc.20255
  • Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., & Tycko, R. (2002). A structural model for Alzheimer’s -amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of United States of America, 99(26), 16742–16747. doi:10.1073/pnas.262663499
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
  • Press-Sandler, O., & Miller, Y. (2018). Molecular mechanisms of membrane-associated amyloid aggregation: Computational perspective and challenges. Biochimica et Biophysica Acta - Biomembranes. doi:10.1016/j.bbamem.2018.03.014.
  • Qiang, W., Yau, W.-M., Luo, Y., Mattson, M. P., & Tycko, R. (2012). Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proceedings of the National Academy of Sciences of United States of America, 109(12), 4443–4448. doi:10.1073/pnas.1111305109
  • Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer’s disease. New England Journal of Medicine, 362(4), 329–344. doi:10.1056/NEJMra0909142
  • Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., … Lal, R. (2005). Amyloid ion channels: A common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences of United States of America, 102(30), 10427–10432. doi:10.1073/pnas.0502066102
  • Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., & Ball, M. J. (1993). beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: Implications for the pathology of Alzheimer disease. Proceedings of the National Academy of Sciences of United States of America, 90(22), 10836–10840. doi:10.1073/pnas.90.22.10836
  • Russ, W. P., & Engelman, D. M. (2000). The GxxxG motif: A framework for transmembrane helix-helix association. Journal of Molecular Biology, 296(3), 911–919. doi:10.1006/jmbi.1999.3489
  • Sato, T., Kienlen-Campard, P., Ahmed, M., Liu, W., Li, H., Elliott, J. I., … Smith, S. O. (2006). Inhibitors of amyloid toxicity based on β-sheet packing of Aβ40 and Aβ42. Biochemistry, 45(17), 5503–5516. doi:10.1021/bi052485f
  • Schütz, A. K., Vagt, T., Huber, M., Ovchinnikova, O. Y., Cadalbert, R., Wall, J., … Meier, B. H. (2015). Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angewandte Chemie International Edition, 54(1), 331–335. doi:10.1002/anie.201408598
  • Selkoe, D. J. (1991). The molecular pathology of Alzheimer’s disease. Neuron, 6(4), 487–498. doi:10.1016/0896-6273(91)90052-2
  • Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. doi:10.15252/emmm.201606210
  • Soncini, M., Vesentini, S., Ruffoni, D., Orsi, M., Deriu, M. A., & Redaelli, A. (2007). Mechanical response and conformational changes of alpha-actinin domains during unfolding: A molecular dynamics study. Biomechanics and Modeling in Mechanobiology, 6(6), 399–407. doi:10.1007/s10237-006-0060-z
  • Wälti, M. A., Ravotti, F., Arai, H., Glabe, C. G., Wall, J. S., Böckmann, A., … Riek, R. (2016). Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proceedings of the National Academy of Sciences of United States of America, 113(34), E4976–84. doi:10.1073/pnas.1600749113
  • Xi, W., Wang, W., Abbott, G., & Hansmann, U. H. E. (2016). Stability of a recently found triple-β-stranded Aβ1–42 fibril motif. The Journal of Physical Chemistry B, 120(20), 4548–4557. doi:10.1021/acs.jpcb.6b01724
  • Xiang, N., Lyu, Y., Zhu, X., & Narsimhan, G. (2018). Investigation of the interaction of amyloid β peptide (11-42) oligomers with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane using molecular dynamics simulation. Physical Chemistry Chemical Physics, 20(10), 6817–6829. doi:10.1039/C7CP07148E
  • Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., … Ishii, Y. (2015). Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nature Structural & Molecular Biology, 22(6), 499–505. doi:10.1038/nsmb.2991

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.