179
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Revealing binding selectivity of ligands toward murine double minute 2 and murine double minute X based on molecular dynamics simulations and binding free energy calculations

ORCID Icon, , , , &
Pages 5081-5094 | Received 17 Oct 2019, Accepted 18 Nov 2019, Published online: 03 Dec 2019

References

  • Ashcroft, M., & Vousden, K. H. (1999). Regulation of p53 stability. Oncogene, 18(53), 7637–7643. doi:10.1038/sj.onc.1203012
  • Böttger, V., Böttger, A., Garcia-Echeverria, C., Ramos, Y. F. M., van der Eb, A. J., Jochemsen, A. G., & Lane, D. P. (1999). Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene, 18(1), 189–199. doi:10.1038/sj.onc.1202281
  • Baek, S., Kutchukian, P. S., Verdine, G. L., Huber, R., Holak, T. A., Lee, K. W., & Popowicz, G. M. (2012). Structure of the stapled p53 peptide bound to Mdm2. Journal of the American Chemical Society, 134(1), 103–106. doi:10.1021/ja2090367
  • Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins: Structure, Function, and Bioinformatics, 73(3), 765–783. doi:10.1002/prot.22102
  • Bixby, D., Kujawski, L., Wang, S., & Malek, S. N. (2008). The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to Mdm2 inhibitor-mediated apoptosis. Cell Cycle, 7(8), 971–979. doi:10.4161/cc.7.8.5754
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi:10.1002/jcc.20290
  • Chen, J. (2018). Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. Journal of Biomolecular Structure and Dynamics, 36(2), 351–361. doi:10.1080/07391102.2016.1277783
  • Chen, J., Pang, L., Wang, W., Wang, L., Zhang, J. Z. H., & Zhu, T. (2019a). Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2019.1591304
  • Chen, J., Wang, J., Yin, B., Pang, L., Wang, W., & Zhu, W. (2019b). Molecular mechanism of binding selectivity of inhibitors toward BACE1 and BACE2 revealed by multiple short molecular dynamics simulations and free-energy predictions. ACS Chemical Neuroscience, 10(10), 4303–4318. doi:10.1021/acschemneuro.9b00348
  • Chen, J., Wang, J., Zhu, W., & Li, G. (2013). A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. Journal of Computer-Aided Molecular Design, 27(11), 965–974. doi:10.1007/s10822-013-9693-z
  • Chen, J., Wang, X., Pang, L., Zhang, J. Z. H., & Zhu, T. (2019c). Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Research, 47(13), 6618–6631. doi:10.1093/nar/gkz499
  • Cheok, C. F., & Lane, D. P. (2008). New developments in small molecules targeting p53 pathways in anticancer therapy. Drug Development Research, 69(6), 289–296. doi:10.1002/ddr.20261
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • de Graaf, P., Little, N. A., Ramos, Y. F. M., Meulmeester, E., Letteboer, S. J. F., & Jochemsen, A. G. (2003). Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. Journal of Biological Chemistry, 278(40), 38315–38324. doi:10.1074/jbc.M213034200
  • Dezi, C., Carotti, A., Magnani, M., Baroni, M., Padova, A., Cruciani, G., … Pellicciari, R. (2010). Molecular interaction fields and 3D-QSAR studies of p53 − MDM2 inhibitors suggest additional features of ligand − target interaction. Journal of Chemical Information and Modeling, 50(8), 1451–1465. doi:10.1021/ci100113p
  • Ding, Q., Zhang, Z., Liu, J.-J., Jiang, N., Zhang, J., Ross, T. M., … Graves, B. (2013). Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. Journal of Medicinal Chemistry, 56(14), 5979–5983. doi:10.1021/jm400487c
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Fu, T., Min, H., Xu, Y., Chen, J., & Li, G. (2012). Molecular dynamic simulation insights into the normal state and restoration of p53 function. International Journal of Molecular Sciences, 13(8), 9709–9740. doi:10.3390/ijms13089709
  • Gao, Y., Zhu, T., & Chen, J. (2018). Exploring drug-resistant mechanisms of I84V mutation in HIV-1 protease toward different inhibitors by thermodynamics integration and solvated interaction energy method. Chemical Physics Letters, 706, 400–408. doi:10.1016/j.cplett.2018.06.040
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330(4), 891–913. doi:10.1016/S0022-2836(03)00610-7
  • Gollner, A., Rudolph, D., Arnhof, H., Bauer, M., Blake, S. M., Boehmelt, G., … McConnell, D. B. (2016). Discovery of novel spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds as chemically stable and orally active inhibitors of the MDM2–p53 interaction. Journal of Medicinal Chemistry, 59(22), 10147–10162. doi:10.1021/acs.jmedchem.6b00900
  • Grace, C. R., Ban, D., Min, J., Mayasundari, A., Min, L., Finch, K. E., … Kriwacki, R. W. (2016). Monitoring ligand-induced protein ordering in drug discovery. Journal of Molecular Biology, 428(6), 1290–1303. doi:10.1016/j.jmb.2016.01.016
  • Graves, B., Thompson, T., Xia, M., Janson, C., Lukacs, C., Deo, D., … Vassilev, L. T. (2012). Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11788–11793. doi:10.1073/pnas.1203789109
  • Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299. doi:10.1038/387296a0
  • Hou, T., McLaughlin, W. A., & Wang, W. (2007). Evaluating the potency of HIV-1 protease drugs to combat resistance. Proteins: Structure, Function, and Bioinformatics, 71(3), 1163–1174. doi:10.1002/prot.21808
  • Hou, T., Zhang, W., Wang, J., & Wang, W. (2009). Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Proteins: Structure, Function, and Bioinformatics, 74(4), 837–846. doi:10.1002/prot.22192
  • Hu, G., Wang, D., Liu, X., & Zhang, Q. (2010). A computational analysis of the binding model of MDM2 with inhibitors. Journal of Computer-Aided Molecular Design, 24(8), 687–697. doi:10.1007/s10822-010-9366-0
  • Hu, G., Yu, X., Bian, Y., Cao, Z., Xu, S., Zhao, L., … Wang, J. (2018). Atomistic analysis of ToxN and ToxI complex unbinding mechanism. International Journal of Molecular Sciences, 19(11), 3524. doi:10.3390/ijms19113524
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Genetics, 11(3), 205–217. doi:10.1002/prot.340110305
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. doi:10.1063/1.1332996
  • Jakalian, A., Bush, B. L., Jack, D. B., & Bayly, C. I. (2000). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. Journal of Computational Chemistry, 21(2), 132–146. doi:10.1002/(sici)1096-987x(20000130)21:2 < 132::aid-jcc5 > 3.0.co;2-p
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. doi:10.1002/jcc.10128
  • Jeay, S., Ferretti, S., Holzer, P., Fuchs, J., Chapeau, E. A., Wartmann, M., … Sellers, W. R. (2018). Dose and schedule determine distinct molecular mechanisms underlying the efficacy of the p53–MDM2 inhibitor HDM201. Cancer Research, 78(21), 6257–6267. doi:10.1158/0008-5472.CAN-18-0338
  • Jia, X., Wang, M., Shao, Y., König, G., Brooks, B. R., Zhang, J. Z. H., & Mei, Y. (2016). Calculations of solvation free energy through energy reweighting from molecular mechanics to quantum mechanics. Journal of Chemical Theory and Computation, 12(2), 499–511. doi:10.1021/acs.jctc.5b00920
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Joseph, T. L., Madhumalar, A., Brown, C. J., Lane, D. P., & Verma, C. S. (2010). Differential binding of p53 and nutlin to MDM2 and MDMX: Computational studies. Cell Cycle, 9(6), 1167–1181. doi:10.4161/cc.9.6.11067
  • Kallen, J., Goepfert, A., Blechschmidt, A., Izaac, A., Geiser, M., Tavares, G., … Lisztwan, J. (2009). Crystal structures of human MdmX (HdmX) in complex with p53 peptide analogues reveal surprising conformational changes. Journal of Biological Chemistry, 284(13), 8812–8821. doi:10.1074/jbc.M809096200
  • Kallen, J., Izaac, A., Chau, S., Wirth, E., Schoepfer, J., Mah, R., … Furet, P. (2019). Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes. ChemMedChem, 14(14), 1305–1314. doi:10.1002/cmdc.201900201
  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., & Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science, 274(5289), 948–953. doi:10.1126/science.274.5289.948
  • Levy, R. M., Srinivasan, A. R., Olson, W. K., & McCammon, J. A. (1984). Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 23(6), 1099–1112. doi:10.1002/bip.360230610
  • Li, C., Pazgier, M., Li, C., Yuan, W., Liu, M., Wei, G., … Lu, W. (2010). Systematic mutational analysis of peptide inhibition of the p53–MDM2/MDMX interactions. Journal of Molecular Biology, 398(2), 200–213. doi:10.1016/j.jmb.2010.03.005
  • Li, D., Han, J.-G., Chen, H., Li, L., Zhao, R.-N., Liu, G., & Duan, Y. (2012). Insights into the structural function of the complex of HIV-1 protease with TMC-126: Molecular dynamics simulations and free-energy calculations. Journal of Molecular Modeling, 18(5), 1841–1854. doi:10.1007/s00894-011-1205-2
  • Li, D., Zhang, Y., Zhao, R.-N., Fan, S., & Han, J.-G. (2014). Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation. Journal of Molecular Modeling, 20(2), 2122. doi:10.1007/s00894-014-2122-y
  • Li, G., Shen, H., Zhang, D., Li, Y., & Wang, H. (2016). Coarse-grained modeling of nucleic acids using anisotropic Gay–Berne and electric multipole potentials. Journal of Chemical Theory and Computation, 12(2), 676–693. doi:10.1021/acs.jctc.5b00903
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61(4), 704–721. doi:10.1002/prot.20660
  • Li, M., Cong, Y., Li, Y., Zhong, S., Wang, R., Li, H., & Duan, L. (2019a). Insight into the binding mechanism of p53/pDIQ-MDMX/MDM2 with the interaction entropy method. Frontiers in Chemistry, 7(33). doi:10.3389/fchem.2019.00033
  • Li, X., Tolbert, W. D., Hu, H.-G., Gohain, N., Zou, Y., Niu, F., … Lu, W. (2019b). Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chemical Science, 10(5), 1522–1530. doi:10.1039/C8SC03275K
  • Lu, S.-Y., Jiang, Y.-J., Zou, J.-W., & Wu, T.-X. (2011). Molecular modeling and molecular dynamics simulation studies on pyrrolopyrimidine-based α-helix mimetic as dual inhibitors of MDM2 and MDMX. Journal of Molecular Graphics and Modelling, 30, 167–178. doi:10.1016/j.jmgm.2011.07.003
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. doi:10.1021/acs.jctc.5b00255
  • Martins, C. P., Brown-Swigart, L., & Evan, G. I. (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell, 127(7), 1323–1334. doi:10.1016/j.cell.2006.12.007
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. doi:10.1021/ct300418h
  • Murray, J. K., & Gellman, S. H. (2007). Targeting protein–protein interactions: Lessons from p53/MDM2. Biopolymers, 88(5), 657–686. doi:10.1002/bip.20741
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55(2), 383–394. doi:10.1002/prot.20033
  • Pazgier, M., Liu, M., Zou, G., Yuan, W., Li, C., Li, C., … Lu, W. (2009). Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4665–4670. doi:10.1073/pnas.0900947106
  • Phan, J., Li, Z., Kasprzak, A., Li, B., Sebti, S., Guida, W., … Chen, J. (2010). Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. Journal of Biological Chemistry, 285(3), 2174–2183. doi:10.1074/jbc.M109.073056
  • Popowicz, G. M., Czarna, A., Wolf, S., Wang, K., Wang, W., Dömling, A., & Holak, T. A. (2010). Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle, 9(6), 1104–1111. doi:10.4161/cc.9.6.10956
  • Reed, D., Shen, Y., Shelat, A. A., Arnold, L. A., Ferreira, A. M., Zhu, F., … Dyer, M. A. (2010). Identification and characterization of the first small molecule inhibitor of MDMX. Journal of Biological Chemistry, 285(14), 10786–10796. doi:10.1074/jbc.M109.056747
  • Robles, A. I., & Harris, C. C. (2001). p53-Mediated apoptosis and genomic instability diseases. Acta Oncologica, 40(6), 696–701. doi:10.1080/02841860152619106
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. doi:10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Sakurai, K., Schubert, C., & Kahne, D. (2006). Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. Journal of the American Chemical Society, 128(34), 11000–11001. doi:10.1021/ja063102j
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. doi:10.1002/wcms.1121
  • Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., … Wang, S. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3933–3938. doi:10.1073/pnas.0708917105
  • Shi, D., Bai, Q., Zhou, S., Liu, X., Liu, H., & Yao, X. (2018a). Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity. Proteins: Structure, Function, and Bioinformatics, 86(1), 43–56. doi:10.1002/prot.25401
  • Shi, S., Zhang, S., & Zhang, Q. (2018b). Insight into binding mechanisms of inhibitors MKP56, MKP73, MKP86, and MKP97 to HIV-1 protease by using molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 36(4), 981–992. doi:10.1080/07391102.2017.1305296
  • Shi, S., Zhang, S., & Zhang, Q. (2015). Probing difference in binding modes of inhibitors to MDMX by molecular dynamics simulations and different free energy methods. PLoS One, 10(10), e0141409. doi:10.1371/journal.pone.0141409
  • Shmueli, A., & Oren, M. (2004). Regulation of p53 by Mdm2: Fate is in the numbers. Molecular Cell, 13(1), 4–5. doi:10.1016/S1097-2765(03)00529-X
  • Skalniak, L., Twarda‐Clapa, A., Neochoritis, C. G., Surmiak, E., Machula, M., Wisniewska, A., … Holak, T. A. (2019). A fluorinated indole-based MDM2 antagonist selectively inhibits the growth of p53wt osteosarcoma cells. The FEBS Journal, 286(7), 1360–1374. doi:10.1111/febs.14774
  • Song, D., Luo, R., & Chen, H.-F. (2017). The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered proteins. Journal of Chemical Information and Modeling, 57(5), 1166–1178. doi:10.1021/acs.jcim.7b00135
  • Song, L. T., Tu, J., Liu, R. R., Zhu, M., Meng, Y. J., & Zhai, H. L. (2019). Molecular mechanism study of several inhibitors binding to BRD9 bromodomain based on molecular simulations. Journal of Biomolecular Structure and Dynamics, 37(11), 2970–2979. doi:10.1080/07391102.2018.1502097
  • Su, J., Liu, X., Zhang, S., Yan, F., Zhang, Q., & Chen, J. (2018). A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(5), 1212–1224. doi:10.1080/07391102.2017.1317666
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., … Hou, T. (2014a). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics, 16(40), 22035–22045. doi:10.1039/C4CP03179B
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014b). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729. doi:10.1039/C4CP01388C
  • Tian, S., Zeng, J., Liu, X., Chen, J., Zhang, J. Z. H., & Zhu, T. (2019). Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling. Physical Chemistry Chemical Physics, 21(39), 22103. doi:10.1039/C9CP03598B
  • Twarda-Clapa, A., Krzanik, S., Kubica, K., Guzik, K., Labuzek, B., Neochoritis, C. G., … Holak, T. A. (2017). 1,4,5-Trisubstituted imidazole-based p53–MDM2/MDMX antagonists with aliphatic linkers for conjugation with biological carriers. Journal of Medicinal Chemistry, 60(10), 4234–4244. doi:10.1021/acs.jmedchem.7b00104
  • Uldrijan, S., Pannekoek, W.-J., & Vousden, K. H. (2007). An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. The EMBO Journal, 26(1), 102–112. doi:10.1038/sj.emboj.7601469
  • Vassilev, L. T. (2007). MDM2 inhibitors for cancer therapy. Trends in Molecular Medicine, 13(1), 23–31. doi:10.1016/j.molmed.2006.11.002
  • Vaupel, A., Holzer, P., Ferretti, S., Guagnano, V., Kallen, J., Mah, R., … Furet, P. (2018). In vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor. Bioorganic & Medicinal Chemistry Letters, 28(20), 3404–3408. doi:10.1016/j.bmcl.2018.08.027
  • Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., … Jacks, T. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445 (7128), 661. https://www.nature.com/articles/nature05541#supplementary-information. doi:10.1038/nature05541
  • Veprintsev, D. B., Freund, S. M. V., Andreeva, A., Rutledge, S. E., Tidow, H., Cañadillas, J. M. P., … Fersht, A. R. (2006). Core domain interactions in full-length p53 in solution. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2115–2119. doi:10.1073/pnas.0511130103
  • Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8 (4), 275–283. doi:10.1038/nrm2147
  • Wade, M., Li, Y.-C., & Wahl, G. M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature Reviews Cancer, 13 (2), 83–96. doi:10.1038/nrc3430
  • Wang, J., Morin, P., Wang, W., & Kollman, P. A. (2001a). Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Journal of the American Chemical Society, 123(22), 5221–5230. doi:10.1021/ja003834q
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi:10.1002/jcc.20035
  • Wang, W., & Kollman, P. A. (2000). Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model11Edited by B. Honig. Journal of Molecular Biology, 303(4), 567–582. doi:10.1006/jmbi.2000.4057
  • Wang, W., Lim, W. A., Jakalian, A., Wang, J., Wang, J., Luo, R., … Kollman, P. A. (2001b). An analysis of the interactions between the Sem − 5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. Journal of the American Chemical Society, 123(17), 3986–3994. doi:10.1021/ja003164o
  • Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., … Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656. https://www.nature.com/articles/nature05529#supplementary-information. doi:10.1038/nature05529
  • Yan, F., Liu, X., Zhang, S., Su, J., Zhang, Q., & Chen, J. (2018a). Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(14), 3636–3650. doi:10.1080/07391102.2017.1394221
  • Yan, F., Liu, X., Zhang, S., Su, J., Zhang, Q., & Chen, J. (2018b). Molecular dynamics exploration of selectivity of dual inhibitors 5M7, 65X, and 65Z toward fatty acid binding proteins 4 and 5. International Journal of Molecular Sciences, 19(9), 2496. doi:10.3390/ijms19092496
  • Yan, F., Liu, X., Zhang, S., Su, J., Zhang, Q., & Chen, J. (2019). Electrostatic interaction-mediated conformational changes of adipocyte fatty acid binding protein probed by molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 37(14), 3583–3595. doi:10.1080/07391102.2018.1520648
  • Yang, M., Zhang, X., & Han, K. (2010). Molecular dynamics simulation of SRP GTPases: Towards an understanding of the complex formation from equilibrium fluctuations. Proteins: Structure, Function, and Bioinformatics, 78(10), 2222–2237. doi:10.1002/prot.22734

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.