532
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study

, , ORCID Icon &
Pages 923-942 | Received 26 Dec 2019, Accepted 20 Jan 2020, Published online: 12 Feb 2020

References

  • Delano, W. L. (2002). The PyMOL Molecular Graphics System. Retrieved from http://www.pymol.org
  • Adomako-Bonsu, A. G., Chan, S. L., Pratten, M., & Fry, J. R. (2017). Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicology in Vitro, 40, 248–255. doi:10.1016/j.tiv.2017.01.016
  • Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. doi:10.3390/metabo9110258
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., … Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, Volume 11, 1645–1658. doi:10.2147/IDR.S173867
  • Bassetti, M., Righi, E., & Viscoli, C. (2008). Novel beta-lactam antibiotics and inhibitor combinations. Expert Opinion on Investigational Drugs, 17(3), 285–296. doi:10.1517/13543784.17.3.285
  • Bebrone, C., Lassaux, P., Vercheval, L., Sohier, J. S., Jehaes, A., Sauvage, E., & Galleni, M. (2010). Current challenges in antimicrobial chemotherapy: Focus on b-lactamase inhibition. Drugs, 70(6), 651–679. doi:10.2165/11318430-000000000-00000
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Bhayye, S. S., Roy, K., & Saha, A. (2018). Molecular dynamics simulation study reveals polar nature of pathogenic mutations responsible for stabilizing active conformation of kinase domain in leucine-rich repeat kinase II. Structural Chemistry, 29(3), 657–666. doi:10.1007/s11224-017-1059-z
  • Bush, K. (1988). Recent developments in beta-lactamase research and their implications for the future. Clinical Infectious Diseases, 10(4), 681–690. doi:10.1093/clinids/10.4.681
  • Bush, K., & Bradford, P. A. (2016). Beta-lactams and beta-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247. doi:10.1101/cshperspect.a025247
  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. doi:10.1128/AAC.01009-09
  • Buynak, J. D. (2006). Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations. Biochemical Pharmacology, 71(7), 930–940. doi:10.1016/j.bcp.2005.11.012
  • Cooksey, R., Swenson, J., Clark, N., Gay, E., & Thornsberry, C. (1990). Patterns and mechanisms of beta-lactam resistance among isolates of Escherichia coli from hospitals in the United States. Antimicrobial Agents and Chemotherapy, 34(5), 739–745. doi:10.1128/AAC.34.5.739
  • Dabur, R., Gupta, A., Mandal, T. K., Singh, D. D., Bajpai, V., Gurav, A. M., & Lavekar, G. S. (2008). Antimicrobial activity of some Indian medicinal plants. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), 313–318. doi:10.4314/ajtcam.v4i3.31225
  • Danishuddin, M., & Khan, A. U. (2011). Molecular modeling and docking analysis of beta-lactamases with inhibitors: A comparative study. In Silico Biology, 11(5-6), 273–280. doi:10.3233/ISB-2012-0443
  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. doi:10.1128/MMBR.00016-10
  • Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336. doi:10.3390/metabo2020303
  • Discovery Studio Modeling Environment. (2016). San Diego: Dassault Systèmes BIOVIA.
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of beta-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201. doi:10.1128/CMR.00037-09
  • Ehmann, D. E., Jahić, H., Ross, P. L., Gu, R.-F., Hu, J., Durand-Réville, T. F., … Fisher, S. L. (2013). Kinetics of avibactam inhibition against Class A, C, and D beta-lactamases. Journal of Biological Chemistry, 288(39), 27960–27971. doi:10.1074/jbc.M113.485979
  • Ehmann, D. E., Jahic, H., Ross, P. L., Gu, R.-F., Hu, J., Kern, G., … Fisher, S. L. (2012). Avibactam is a covalent, reversible, non-beta-lactam beta-lactamase inhibitor. Proceedings of the National Academy of Sciences, 109(29), 11663–11668. doi:10.1073/pnas.1205073109
  • Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., & Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 11(5), 425–445.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Fischbach, M. A., & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science, 325(5944), 1089–1093. doi:10.1126/science.1176667
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. doi:10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. doi:10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2011). Comparison of the efficiency of the LIE and MM/GBSA methods to calculate ligand-binding energies. Journal of Chemical Theory and Computation, 7(11), 3768–3778. doi:10.1021/ct200163c
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. doi:10.1517/17460441.2015.1032936
  • Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275. doi:10.1016/j.jaim.2017.05.004
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., … Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. doi:10.1021/acs.jctc.5b00864
  • Helfand, M. S., & Bonomo, R. A. (2005). Current challenges in antimicrobial chemotherapy: The impact of extended-spectrum beta-lactamases and metallo-beta-lactamases on the treatment of resistant Gram-negative pathogens. Current Opinion in Pharmacology, 5(5), 452–458. doi:10.1016/j.coph.2005.04.013
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 27–38.
  • Kuete, V., Alibert-Franco, S., Eyong, K. O., Ngameni, B., Folefoc, G. N., Nguemeving, J. R., … Pagès, J.-M. (2011). Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. International Journal of Antimicrobial Agents, 37(2), 156–161. doi:10.1016/j.ijantimicag.2010.10.020
  • Kuete, V., Kamga, J., Sandjo, L. P., Ngameni, B., Poumale, H. M., Ambassa, P., & Ngadjui, B. T. (2011). Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl. (Moraceae). BMC Complementary and Alternative Medicine, 11 (1), 6. doi:10.1186/1472-6882-11-6
  • Kuzin, A. P., Nukaga, M., Nukaga, Y., Hujer, A. M., Bonomo, R. A., & Knox, J. R. (1999). Structure of the SHV-1 beta-lactamase. Biochemistry, 38(18), 5720–5727. doi:10.1021/bi990136d
  • Lee, N., Yuen, K. Y., & Kumana, C. R. (2003). Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs, 63(14), 1511–1524. doi:10.2165/00003495-200363140-00006
  • Leflon-Guibout, V., Ternat, G., Heym, B., & Nicolas-Chanoine, M. H. (2002). Exposure to co-amoxiclav as a risk factor for co-amoxiclav-resistant Escherichia coli urinary tract infection. Journal of Antimicrobial Chemotherapy, 49(2), 367–371. doi:10.1093/jac/49.2.367
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. doi:10.1016/S0169-409X(00)00129-0
  • Lu, L., Hu, H., Hou, H., & Wang, B. (2013). An improved B3LYP method in the calculation of organic thermochemistry and reactivity. Computational and Theoretical Chemistry, 1015, 64–71. doi:10.1016/j.comptc.2013.04.009
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. doi:10.1021/jp003020w
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. doi:10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. doi:10.1063/1.467468
  • Mirza, S. B., Lee, R. C. H., Chu, J. J. H., Salmas, R. E., Mavromoustakos, T., & Durdagi, S. (2018). Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. Journal of Molecular Graphics and Modelling, 79, 88–102. doi:10.1016/j.jmgm.2017.10.010
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. doi:10.1021/acs.jnatprod.5b01055
  • Page, M. G. (2000). b-Lactamase inhibitors. Drug Resistance Updates, 3(2), 109–125.
  • Pages, J. M., Peslier, S., Keating, T. A., Lavigne, J. P., & Nichols, W. W. (2015). Role of the outer membrane and porins in susceptibility of beta-lactamase-producing enterobacteriaceae to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 60(3), 1349–1359. doi:10.1128/AAC.01585-15
  • Papp-Wallace, K. M., & Bonomo, R. A. (2016). New beta-lactamase inhibitors in the clinic. Infectious Disease Clinics of North America, 30(2), 441–464. doi:10.1016/j.idc.2016.02.007
  • Paterson, D. L., Hujer, K. M., Hujer, A. M., Yeiser, B., Bonomo, M. D., Rice, L. B., & Bonomo, R. A. (2003). Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrobial Agents and Chemotherapy, 47(11), 3554–3560. doi:10.1128/AAC.47.11.3554-3560.2003
  • Romano, J. D., & Tatonetti, N. P. (2019). Informatics and computational methods in natural product drug discovery: A review and perspectives. Frontiers in Genetics, 10, 368. doi:10.3389/fgene.2019.00368
  • Sakkiah, S., & Lee, K. W. (2012). Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Acta Pharmacologica Sinica, 33(7), 964–978. doi:10.1038/aps.2012.21
  • Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Nat Prod Rep, 27(2), 238–254. doi:10.1039/B916096E
  • Sanders, W. E., Jr., & Sanders, C. C. (1988). Inducible beta-lactamases: Clinical and epidemiologic implications for use of newer cephalosporins. Clinical Infectious Diseases, 10(4), 830–838. doi:10.1093/clinids/10.4.830
  • Schrödinger Release 2018-4: Desmond Molecular Dynamics System. (2018). New York, NY: Schrödinger, D. E. Shaw Research.
  • Schrödinger Release 2018-4: Maestro. (2018). New York, NY: Schrödinger, LLC. Retrieved from https://www.schrodinger.com/
  • Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. doi:10.1016/j.sjbs.2014.08.002
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK (a) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. doi:10.1007/s10822-007-9133-z
  • Shlaes, D. M. (2013). New beta-lactam-beta-lactamase inhibitor combinations in clinical development. Annals of the New York Academy of Sciences, 1277 (1), 105–114. doi:10.1111/nyas.12010
  • Singh, I., Singh, S., Verma, V., Uversky, V. N., & Chandra, R. (2018). In silico evaluation of the resistance of the T790M variant of epidermal growth factor receptor kinase to cancer drug Erlotinib. Journal of Biomolecular Structure and Dynamics, 36(16), 4209–4219. doi:10.1080/07391102.2017.1411293
  • Spadafino, J. T., Cohen, B., Liu, J., & Larson, E. (2014). Temporal trends and risk factors for extended-spectrum beta-lactamase-producing Escherichia coli in adults with catheter-associated urinary tract infections. Antimicrobial Resistance and Infection Control, 3(1), 39. doi:10.1186/s13756-014-0039-y
  • Stanton, R. C. (2012). Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 64(5), 362–369. doi:10.1002/iub.1017
  • Taha, M. O., Habash, M., Al-Hadidi, Z., Al-Bakri, A., Younis, K., & Sisan, S. (2011). Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. Journal of Chemical Information and Modeling, 51(3), 647–669. doi:10.1021/ci100368t
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4(2), 297–306. doi:10.1021/ct700248k
  • Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P & T: a Peer-Reviewed Journal for Formulary Management, 40(4), 277–283.
  • Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9(6), e1403. doi:10.7759/cureus.1403
  • Zhang, R., Eggleston, K., Rotimi, V., & Zeckhauser, R. J. (2006). Antibiotic resistance as a global threat: Evidence from China, Kuwait and the United States. Globalization and Health, 2(1), 6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.