497
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach

, , , ORCID Icon, , , & show all
Pages 1139-1154 | Received 20 Nov 2019, Accepted 03 Feb 2020, Published online: 24 Feb 2020

References

  • Alimentarius, C. (2003). Codex principles and guidelines on foods derived from biotechnology. Rome: Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Food and Agriculture Organisation.
  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., … Magrane, M. (2004). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 32, D115–D119. doi:10.1093/nar/gkh131
  • Azim, K. F., Hasan, M., Hossain, M. N., Somana, S. R., Hoque, S. F., Bappy, M. N., … Lasker, T. (2019). Immunoinformatics approaches for designing a novel multi epitope peptide vaccine against human norovirus (Norwalk virus). Infection, Genetics and Evolution, 74, 103936. doi:10.1016/j.meegid.2019.103936
  • Berman, H. M., West Brook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Björklund, Å. K., Soeria-Atmadja, D., Zorzet, A., Hammerling, U., & Gustafsson, M. G. (2005). Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins. Bioinformatics, 21(1), 39–50. doi:10.1093/bioinformatics/bth477
  • Blaszczyk, M., Kurcinski, M., Kouza, M., Wieteska, L., Debinski, A., Kolinski, A., & Kmiecik, S. (2016). Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 93, 72–83. doi:10.1016/j.ymeth.2015.07.004
  • Bodenmann, P., Althaus, F., Burnand, B., Vaucher, P., Pécoud, A., & Genton, B. (2007). Medical care of asylum seekers: A descriptive study of the appropriateness of nurse practitioners’ care compared to traditional physician-based care in a gatekeeping system. BMC Public Health, 7(1), 310. doi:10.1186/1471-2458-7-310
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153. doi:10.1186/1471-2105-7-153
  • Bui, H. H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BioMed Central, 8(1), 361. doi:10.1186/1471-2105-8-361
  • Burt, F. J., Rolph, M. S., Rulli, N. E., Mahalingam, S., & Heise, M. T. (2012). Chikungunya: A re-emerging virus. The Lancet, 379(9816), 662–671. doi:10.1016/S0140-6736(11)60281-X
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., … Walker, R. C. (2006). AMBER 9.0 Software package. San Francisco: University of California.
  • Cavrini, F., Gaibani, P., Pierro, A. M., Rossini, G., Landini, M. P., & Sambri, V. (2009). Chikungunya: An emerging and spreading arthropod-borne viral disease. The Journal of Infection in Developing Countries, 3(10), 744–752. doi:10.3855/jidc.169
  • Chandak, N. H., Kashyap, R. S., Kabra, D., Karandikar, P., Saha, S. S., Morey, S. H., … Daginawala, H. F. (2009). Neurological complications of Chikungunya virus infection. Neurology India, 57(2), 177. doi:10.4103/0028-3886.51289
  • Charrel, R. N., de Lamballerie, X., & Raoult, D. (2007). Chikungunya outbreaks-the globalization of vectorborne diseases. New England Journal of Medicine, 356(8), 769–771. doi:10.1056/NEJMp078013
  • Chou, P. Y., & Fasman, G. D. (1978). Empirical predictions of protein conformation. Annual Review of Biochemistry, 47(1), 251–276. doi:10.1146/annurev.bi.47.070178.001343
  • Couderc, T., Khandoudi, N., Grandadam, M., Visse, C., Gangneux, N., Bagot, S., … Lecuit, M. (2009). Prophylaxis and therapy for Chikungunya virus infection. The Journal of Infectious Diseases, 200(4), 516–523. doi:10.1086/600381
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. doi:10.1186/1471-2105-8-4
  • Emini, E. A., Hughes, J. V., Perlow, D., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55(3), 836–839. doi:10.1128/JVI.55.3.836-839.1985
  • Enserink, M. (2007). Infectious diseases. Chikungunya: No longer a third world disease. Science, 318(5858), 1860–1861. doi:10.1126/science.318.5858.1860
  • Gould, E. A., Coutard, B., Malet, H., Morin, B., Jamal, S., Weaver, S., … Forrester, N. (2010). Understanding the alphaviruses: Recent research on important emerging pathogens and progress towards their control. Antiviral Research, 87(2), 111–124. doi:10.1016/j.antiviral.2009.07.007
  • Groot, D., & Rappuoli, R. (2004). Genome-derived vaccines. Expert Review of Vaccines, 3(1), 59–76. doi:10.1586/14760584.3.1.59
  • Hammon, W. M., Rundnick, A., & Sather, G. E. (1960). Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science, 131(3407), 1102–1103. doi:10.1126/science.131.3407.1102
  • Hasan, M., Islam, S., Chakraborty, S., Mustafa, A. H., Azim, K. F., Joy, Z. F., … Hasan, M. N. (2019). Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. Journal of Biomolecular Structure and Dynamics, 12, 1–18. doi:10.1080/07391102.2019.1647286
  • Hasan, M. A., Khan, M. A., Datta, A., Mazumder, M. H. H., & Hossain, M. U. (2015). A comprehensive immunoinformatics and target site study revealed the corner-stone toward Chikungunya virus treatment. Molecular Immunology, 65(1), 189–204. doi:10.1016/j.molimm.2014.12.013
  • Her, Z., Malleret, B., Chan, M., Ong, E. K., Wong, S. C., Kwek, D. J., … Ng, L. F. (2010). Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. The Journal of Immunology, 184(10), 5903–5913. doi:10.4049/jimmunol.0904181
  • Hossain, M. U., Keya, C. A., Das, K. C., Hashem, A., Omar, T. M., Khan, M. A., … Salimullah, M. (2018). An immunopharmacoinformatics approach in development of vaccine and drug candidates for West Nile virus. Frontiers in Chemistry, 6, 246doi:10.3389/fchem.2018.00246
  • Islam, M. J., Parves, M. R., Mahmud, S., Tithi, F. A., & Reza, M. A. (2019). Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Computational Biology and Chemistry, 80, 31–45. doi:10.1016/j.compbiolchem.2019.03.004
  • Jose, J., Snyder, J. E., & Kuhn, R. J. (2009). A structural and functional perspective of alphavirus replication and assembly. Future Microbiology, 4(7), 837–856. doi:10.2217/fmb.09.59
  • Karplus, P. A., & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften, 72(4), 212–213. doi:10.1007/BF01195768
  • Khan, A. H., Morita, K., del Carmen Parquet, M., Hasebe, F., Mathenge, E. G., & Igarashi, A. (2002). Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. Journal of General Virology, 83(12), 3075–3084. doi:10.1099/0022-1317-83-12-3075
  • Khan, M. A., Hossain, M. U., Rakib‐Uz‐Zaman, S. M., & Morshed, M. N. (2015). Epitope‐based peptide vaccine design and target site depiction against Ebola viruses: An immunoinformatics study. Scandinavian Journal of Immunology, 82(1), 25–34. doi:10.1111/sji.12302
  • Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2), 172–174. doi:10.1016/0014-5793(90)80535-Q
  • Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force‐field parameterization in crystal space. Proteins: Structure, Function, and Bioinformatics, 57(4), 678–683. doi:10.1002/prot.20251
  • Krieger, E., Nielsen, J. E., Spronk, C. A., & Vriend, G. (2006). Fast empirical pKa prediction by Ewald summation. Journal of Molecular Graphics and Modelling, 25(4), 481–486. doi:10.1016/j.jmgm.2006.02.009
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. doi:10.1002/jcc.23899
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes1. Journal of Molecular Biology, 305(3), 567–580. doi:10.1006/jmbi.2000.4315
  • Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., & Kmiecik, S. (2015). CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 43(W1), W419–24. doi:10.1093/nar/gkv456
  • Labadie, K., Larcher, T., Joubert, C., Mannioui, A., Delache, B., Brochard, P., … de Lamballerie, X. (2010). Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. Journal of Clinical Investigation, 120(3), 894–906. doi:10.1172/JCI40104
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Brunak, S., Lund, O., & Nielsen, M. (2005). An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. European Journal of Immunology, 35(8), 2295–2303. doi:10.1002/eji.200425811
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. doi:10.1186/1471-2105-8-424
  • Mahendradas, P., Avadhani, K., & Shetty, R. (2013). Chikungunya and the eye: A review. Journal of Ophthalmic Inflammation and Infection, 3(1), 35. doi:10.1186/1869-5760-3-35
  • Mahmud, S., Parves, M. R., Riza, Y. M., Sujon, K. M., Ray, S., Tithi, F. A., … Absar, N. (2019). Exploring the potent inhibitors and binding modes of phospholipase A2 through in silico investigation. Journal of Biomolecular Structure and Dynamics, 22, 1–1. doi:10.1080/07391102.2019.1680440
  • Marshall, S. J. (2004). Developing countries face double burden of disease. Bulletin of World Health Organization, 82(7), 556.
  • Nain, Z., Abdulla, F., Rahman, M. M., Karim, M. M., Khan, M. S. A., Sayed, S. B., … Adhikari, U. K. (2019). Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 20, 1–18. doi:10.1080/07391102.2019.1692072
  • Nair, D. T., Singh, K., Siddiqui, Z., Nayak, B. P., Rao, K. V., & Salunke, D. M. (2002). Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. The Journal of Immunology, 168(5), 2371–2382. doi:10.4049/jimmunol.168.5.2371
  • Nielsen, M., Lundegaard, C., & Lund, O. (2007). Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BioMed Central, 8(1), 238.
  • Novotný, J., Handschumacher, M., Haber, E., Bruccoleri, R. E., Carlson, W. B., Fanning, D. W., … Rose, G. D. (1986). Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proceedings of the National Academy of Sciences, 83(2), 226–230. doi:10.1073/pnas.83.2.226
  • Oliveira Tosta, S. F., Passos, M. S., Kato, R., Salgado, A., Xavier, J., Jaiswal, A. K., … Alcantara, L. C. J. (2020). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2019.1707120
  • Ozden, S., Huerre, M., Riviere, J. P., Coffey, L. L., Afonso, P. V., Mouly, V., … Jaffar, M. C. (2007). Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One, 2(6), e527. doi:10.1371/journal.pone.0000527
  • Parashar, D., & Cherian, S. (2014). Antiviral perspectives for chikungunya virus. BioMed Research International, 2014, 1–11. doi:10.1155/2014/631642
  • Parker, J. M., Guo, D., & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25(19), 5425–5432. doi:10.1021/bi00367a013
  • Patronov, A., & Doytchinova, I. (2013). Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biology, 3(1), 120139–120139. doi:10.1098/rsob.120139
  • Peters, B., & Sette, A. (2005). Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BioMed Central, 6(1), 132.
  • Petersen, E., Wilson, M. E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., … Azhar, E. I. (2016). Rapid spread of Zika virus in the Americas-implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. International Journal of Infectious Diseases, 44, 11–15. doi:10.1016/j.ijid.2016.02.001
  • Pialoux, G., Gaüzère, B. A., Jauréguiberry, S., & Strobel, M. (2007). Chikungunya, an epidemic arbovirosis. The Lancet Infectious Diseases, 7(5), 319–327. doi:10.1016/S1473-3099(07)70107-X
  • Poggesi, I., Benedetti, M. S., Whomsley, R., Lamer, S. L., Molimard, M., & Watelet, J. B. (2009). Pharmacokinetics in special populations. Drug Metabolism Reviews, 41(3), 422–454. doi:10.1080/10837450902891527
  • Priyadarshini, V., Pradhan, D., Munikumar, M., Swargam, S., Umamaheswari, A., & Rajasekhar, D. (2014). Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. Journal of Biomolecular Structure and Dynamics, 32(6), 876–889. doi:10.1080/07391102.2013.795871
  • Rashad, A. A., Mahalingam, S., & Keller, P. A. (2014). Chikungunya virus: Emerging targets and new opportunities for medicinal chemistry. Journal of Medicinal Chemistry, 57(4), 1147–1166. doi:10.1021/jm400460d
  • Ravichandran, L., Venkatesan, A., & Febin Prabhu Dass, J. (2018). Epitope-based immunoinformatics approach on RNA-dependent RNA polymerase (RdRp) protein complex of Nipah virus (NiV). Journal of Cellular Biochemistry,120(5), 7082–7095. doi:10.1002/jcb.27979
  • Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A. C., Panning, M., … Silvi, G. (2007). Infection with chikungunya virus in Italy: An outbreak in a temperate region. The Lancet, 370(9602), 1840–1846. doi:10.1016/S0140-6736(07)61779-6
  • Rini, J. M., Schulze-Gahmen, U., & Wilson, I. A. (1992). Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science, 255(5047), 959–965. doi:10.1126/science.1546293
  • Robinson, M. C. (1955). An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Transactions of the Royal Society of Tropical Medicine and Hygiene, 49(1), 28–32. doi:10.1016/0035-9203(55)90080-8
  • Rose, G. D., Glerasch, L. M., & Smith, J. A. (1985). Turns in peptides and proteins. Advances in Protein Chemistry, 37, 1–109.
  • Ross, R. W. (1956). The Newala epidemic: III. The virus: Isolation, pathogenic properties and relationship to the epidemic. Journal of Hygiene, 54(2), 177–191. doi:10.1017/S0022172400044442
  • Rungrotmongkol, T., Nunthaboot, N., Malaisree, M., Kaiyawet, N., Yotmanee, P., Meeprasert, A., & Hannongbua, S. (2010). Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: Molecular dynamics simulations and free energy calculations. Journal of Molecular Graphics and Modelling, 29(3), 347–353. doi:10.1016/j.jmgm.2010.09.010
  • Sabetian, S., Nezafat, N., Dorosti, H., Zarei, M., & Ghasemi, Y. (2019). Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. Journal of Biomolecular Structure and Dynamics, 37(10), 2546–2563. doi:10.1080/07391102.2018.1491890
  • Saha, S., & Raghava, G. P. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server), W202–W209. doi:10.1093/nar/gkl343
  • Schwartz, O., & Albert, M. L. (2010). Biology and pathogenesis of chikungunya virus. Nature Reviews Microbiology, 8(7), 491–500. doi:10.1038/nrmicro2368
  • Shahbaaz, M., Nkaule, A., & Christoffels, A. (2019). Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Scientific Reports, 9(1), 1–2. doi:10.1038/s41598-019-40621-7
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75
  • Simizu, B., Yamamoto, K., Hashimoto, K., & Ogata, T. (1984). Structural proteins of Chikungunya virus. Journal of Virology, 51(1), 254–258. doi:10.1128/JVI.51.1.254-258.1984
  • Singh, S. K., & Unni, S. K. (2011). Chikungunya virus: Host pathogen interaction. Reviews in Medical Virology, 21(2), 78–88. doi:10.1002/rmv.681
  • Stadler, M. B., & Stadler, B. M. (2003). Allergenicity prediction by protein sequence. The FASEB Journal, 17(9), 1141–1143. doi:10.1096/fj.02-1052fje
  • Staples, J. E., Breiman, R. F., & Powers, A. M. (2009). Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clinical Infectious Diseases, 49(6), 942–948. doi:10.1086/605496
  • Strauss, J. H., & Strauss, E. G. (1994). The alphaviruses: Gene expression, replication, and evolution. Microbiological Reviews, 58(3), 491–562. doi:10.1128/MMBR.58.3.491-562.1994
  • Sudeep, A. B., & Parashar, D. (2008). Chikungunya: An overview. Journal of Biosciences, 33(4), 443–449. doi:10.1007/s12038-008-0063-2
  • Sun, S., Xiang, Y., Akahata, W., Holdaway, H., Pal, P., Zhang, X., … Rossmann, M. G. (2013). Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife, 2, e00435. doi:10.7554/eLife.00435
  • Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., … Holzhütter, H. G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cmls Cellular and Molecular Life Sciences, 62(9), 1025–1037. doi:10.1007/s00018-005-4528-2
  • Thiboutot, M. M., Kannan, S., Kawalekar, O. U., Shedlock, D. J., Khan, A. S., Sarangan, G., … Muthumani, K. (2010). Chikungunya: A potentially emerging epidemic? PLoS Neglected Tropical Diseases, 4(4), e623. doi:10.1371/journal.pntd.0000623
  • Tomasello, D., & Schlagenhauf, P. (2013). Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Medicine and Infectious Disease, 11(5), 274–284. doi:10.1016/j.tmaid.2013.07.006
  • Townson, H., & Nathan, M. B. (2008). Resurgence of chikungunya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(4), 308–309. doi:10.1016/j.trstmh.2007.11.013
  • Trainor, N. B., Crill, W. D., Roberson, J. A., & Chang, G. J. (2007). Mutation analysis of the fusion domain region of St. Louis encephalitis virus envelope protein. Virology, 360(2), 398–406. doi:10.1016/j.virol.2006.10.033
  • Ul-Rahman, A., & Shabbir, M. A. B. (2019). In silico analysis for development of epitopes-based peptide vaccine against Alkhurma hemorrhagic fever virus. Journal of Biomolecular Structure and Dynamics, 9, 1–13. doi:10.1080/07391102.2019.1651673
  • Von Heijne, G. (1999). A day in the life of Dr K. or how I learned to stop worrying and love lysozyme: A tragedy in six acts. Journal of Molecular Biology, 293(2), 367–379. doi:10.1006/jmbi.1999.2998
  • Voss, J. E., Vaney, M. C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., … Rey, F. A. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 468(7324), 709–712. doi:10.1038/nature09555
  • Wang, Y. F., Sawicki, S. G., & Sawicki, D. L. (1994). Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. Journal of Virology, 68(10), 6466–6475. doi:10.1128/JVI.68.10.6466-6475.1994
  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—A multiple sequence alignment editor and analysis work bench. Bioinformatics, 25(9), 1189–1191. doi:10.1093/bioinformatics/btp033
  • Weaver, S. C., Osorio, J. E., Livengood, J. A., Chen, R., & Stinchcomb, D. T. (2012). Chikungunya virus and prospects for a vaccine. Expert Review of Vaccines, 11(9), 1087–1101. doi:10.1586/erv.12.84
  • Wu, M., Li, M., Yue, Y., & Xu, W. (2016). DNA vaccine with discontinuous T‐cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi‐epitope Mycobacterium tuberculosis vaccine. Microbiology and Immunology, 60(9), 634–645. doi:10.1111/1348-0421.12410
  • Yang, C., Jas, G. S., & Kuczera, K. (2004). Structure, dynamics and interaction with kinase targets: Computer simulations of calmodulin. Biochimica et Biophysica Acta (Bba) - Proteins and Proteomics, 1697(1–2), 289–300. doi:10.1016/j.bbapap.2003.11.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.