374
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies

ORCID Icon, , , , &
Pages 1121-1137 | Received 05 Jan 2020, Accepted 17 Jan 2020, Published online: 21 Feb 2020

References

  • Aghapour, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A. Z., Mahmood, S. S., Tanomand, A., … Samadi Kafil, H. (2019). Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infection and Drug Resistance, 12, 965–975. doi:10.2147/IDR.S199844
  • Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/S0022-2836(05)80360-2
  • Aydın, M., Ergönül, Ö., Azap, A., Bilgin, H., Aydın, G., Çavuş, S. A., … Akalın, H. (2018). Rapid emergence of colistin resistance and its impact on fatality among healthcare-associated infections. Journal of Hospital Infection, 98(3), 260–263. doi:10.1016/j.jhin.2017.11.014
  • Balasubramanian, D., Schneper, L., Kumari, H., & Mathee, K. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Research, 41(1), 1–20. doi:10.1093/nar/gks1039
  • Batool, A., Kamal, M. A., Rizvi, S. M. D., & Rashid, S. (2018). Topical discoveries on multi-target approach to manage Alzheimer’s disease. Current Drug Metabolism, 19(8), 704–713. doi:10.2174/1389200219666180305152553
  • Bianconi, I., Jeukens, J., Freschi, L., Alcalá-Franco, B., Facchini, M., Boyle, B., … Bragonzi, A. (2015). Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics, 16(1), 1105. doi:10.1186/s12864-015-2276-8
  • Cilloniz, C., Dominedo, C., & Torres, A. (2019). Multidrug resistant Gram-negative bacteria in community acquired Pneumonia. Critical Care, 23, 79. doi:10.1186/s13054-019-2371-3
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Science, 2(9), 1511–1519. doi:10.1002/pro.5560020916
  • De Silva, P. M., & Kumar, A. (2019). Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Frontiers in Microbiology, 10, 49. doi:10.3389/fmicb.2019.00049
  • D. E. Shaw Research. (2019). Desmond molecular dynamics system. New York, NY: Schrödinger.
  • Diaz Caballero, J., Clark, S. T., Coburn, B., Zhang, Y., Wang, P. W., Donaldson, S. L., … Guttman, D. S. (2015). Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung. mBio, 6(5), e00981–15. doi:10.1128/mBio.00981-15
  • Dixit, A., Kumar, N., Kumar, S., & Trigun, V. (2019). Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian Journal of Community Medicine, 44, 48. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437806/.
  • Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N. G., Stansfeld, P. J., … Dong, C. (2014). Structural basis for outer membrane lipopolysaccharide insertion. Nature, 511(7507), 52–56. doi:10.1038/nature13464
  • Eichenberger, E. M., & Thaden, J. T. (2019). Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics, 8, 37. doi:10.3390/antibiotics8020037
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. doi:10.1016/s0076-6879(97)77022-8
  • Eze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277–2299. doi:10.2147/IDR.S169894
  • Garnacho-Montero, J., & Timsit, J. F. (2019). Managing Acinetobacter baumannii infections. Current Opinion in Infectious Diseases, 32(1), 69–76. doi:10.1097/QCO.0000000000000518
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. doi:10.1021/cc9800071
  • Han, S., Caspers, N., Zaniewski, R. P., Lacey, B. M., Tomaras, A. P., Feng, X., … Shanmugasundaram, V. (2011). Distinctive attributes of beta-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. Journal of the American Chemical Society, 133(50), 20536–20545. doi:10.1021/ja208835z
  • Ibrahim, M. E. (2019). Prevalence of Acinetobacter baumannii in Saudi Arabia: Risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Annals of Clinical Microbiology and Antimicrobials, 18, 1. doi:10.1186/s12941-018-0301-x
  • Jiang, Q., Chen, J., Yang, C., Yin, Y., & Yao, K. (2019). Quorum sensing: A prospective therapeutic target for bacterial diseases. BioMed Research International, 2019, 1–15. doi:10.1155/2019/2015978
  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30. doi:10.1093/nar/28.1.27
  • Kazemzadeh, H., & Mozafari, M. (2019). Fullerene-based delivery systems. Drug Discovery Today, 24(3), 898–905. doi:10.1016/j.drudis.2019.01.013
  • Kouranov, A., Xie, L., Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic Acids Research, 34(90001), D302–D305. doi:10.1093/nar/gkj120
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereo chemical quality of the protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Lenhard, J. R., Bulitta, J. B., Connell, T. D., King-Lyons, N., Landersdorfer, C. B., Cheah, S. E., & Tsuji, B. T. (2017). High intensity meropenem combinations with polymyxin b: New strategies to overcome carbapenem resistance in Acinetobacter baumannii. Frontiers in Microbiology, 7, 483. doi:10.1093/jac/dkw355
  • Lescat, M., Poirel, L., Tinguely, C., & Nordmann, P. (2019). A resazurin reduction—based assay for rapid detection of polymyxin resistance in Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of Clinical Microbiology, 57(3), e01563. doi:10.1128/JCM.01563
  • Li, H., Luo, Y. F., Williams, B. J., Blackwell, T. S., & Xie, C. M. (2012). Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. International Journal of Medical Microbiology, 302(2), 63–68. doi:10.1016/j.ijmm.2011.10.001
  • Lima, R., Del Fiol, F. S., & Balcão, V. M. (2019). Prospects for the use of new technologies to combat multidrug-resistant bacteria. Frontiers in Pharmacology, 10, 692. doi:10.3389/fphar.2019.00692
  • Lin, W. C. (2019). Emergence of carbapenem resistance in Pseudomonas aeruginosa isolates from a specialized care facility for prolonged mechanical ventilation patients. International Journal of Infectious Diseases, 79, 47. doi:10.1016/j.ijid.2018.11.127
  • Lin, J., Cheng, J., Wang, Y., & Shen, X. (2018). The Pseudomonas Quinolone Signal (PQS): Not just for quorum sensing anymore. Frontiers in Cellular and Infection Microbiology, 8, 230. doi:10.3389/fcimb.2018.00230
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. doi:10.1016/S0169-409X(96)00423-1
  • Lloyd, M. G., Vossler, J. L., Nomura, C. T., & Moffat, J. F. (2019). Blocking RpoN reduces virulence of Pseudomonas aeruginosa isolated from cystic fibrosis patients and increases antibiotic sensitivity in a laboratory strain. Scientific Reports, 9(1), 6677. doi:10.1038/s41598-019-43060-6
  • Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Research, 32(Web Server): W590–W594.
  • Malathi, K., & Ramaiah, S. (2018). Bioinformatics approaches for new drug discovery: A review. Biotechnology and Genetic Engineering Reviews, 34(2), 243–260. doi:10.1080/02648725.2018.1502984
  • Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., & Adibki, A. K. (2015). Antimicrobial activity of carbon-based nanoparticles. Advanced Pharmaceutical Bulletin, 5(1), 19–23. doi:10.5681/apb.2015.003
  • Mohajeri, M., Behnam, B., & Sahebkar, A. (2019). Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. Journal of Cellular Physiology, 234(1), 298–319. doi:10.1002/jcp.26899
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539. doi:10.3389/fmicb.2019.00539
  • Oprea, T. I. (2000). Property distribution of drug-related chemical databases. Journal of Computer-Aided Molecular Design, 14(3), 251–264. doi:10.1023/A:1008130001697
  • Pence, H. E., & Williams, A. (2010). ChemSpider: An online chemical information resource. Journal of Chemical Education, 87(11), 1123–1124. doi:10.1021/ed100697w
  • Sievers, F., & Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology (Clifton, N.J.), 1079, 105–116. doi:10.1007/978-1-62703-646-7_6
  • Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27(1), 135–145. doi:10.1002/pro.3290
  • Skariyachan, S., Parveen, A., & Garka, S. (2017). Nanoparticle Fullerene (C60) demonstrated stable binding with antibacterial potential towards probable targets of drug resistant Salmonella typhi—a computational perspective and in vitro investigation. Journal of Biomolecular Structure and Dynamics, 35(16), 3449–3468. doi:10.1080/07391102.2016.1257441
  • Tacconelli, E., & Pezzani, M. D. (2019). Public health burden of antimicrobial resistance in Europe. The Lancet Infectious Diseases, 19(1), 4–6. doi:10.1016/S1473-3099(18)30648-0
  • Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of lead like combinatorial libraries. Angewandte Chemie International Edition in Edition, 38(24), 3743–3748. doi:10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U
  • Torsten, S., Jurgen, K., Nicolas, G., & Manuel, P. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385. doi:10.1093/nar/gkg520
  • Trott, O., & Olson, A. J. (2010). Autodock Vina: Improving the speed and accuracy with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. doi:10.1021/jm020017n
  • Wannigama, D. L., Hurst, C., Pearson, L., Saethang, T., Singkham-In, U., Luk-In, S., … Chatsuwan, T. (2019). Simple fluorometric-based assay of antibiotic effectiveness for Acinetobacter baumannii biofilms. Scientific Reports, 9(1), 6300. doi:10.1038/s41598-019-42353-0
  • Webb, B., & Sali, A. (2016). Comparative protein structure using MODELLER. Current Protocols in Bioinformatics, 47(1), 5–6.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. doi:10.1093/nar/gkm290
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. doi:10.1016/j.bpj.2011.10.024
  • Yan, R., Hu, S., Ma, N., Song, P., Liang, Q., Zhang, H., & Chen, L. (2018). Regulatory effect of DNA topoisomerase I on T3SS activity, antibiotic susceptibility and quorum- sensing-independent pyocyanin synthesis in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 20(5), 1116. 10.3389/fcimb.2018.00252.
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., … Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. doi:10.1093/bioinformatics/bty707
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. doi:10.1186/1471-2105-9-40
  • Zhu, J., Wang, S., Bu, D., & Xu, J. (2018). Protein threading using residue co-variation and deep learning. Bioinformatics, 34(13), i263–i273. doi:10.1093/bioinformatics/bty278

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.