350
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Fucosterol from Sargassum horridum as an amyloid-beta (Aβ1-42) aggregation inhibitor: in vitro and in silico studies

ORCID Icon, ORCID Icon, , ORCID Icon, , , , , & show all
Pages 1271-1283 | Received 07 Oct 2019, Accepted 07 Feb 2020, Published online: 11 Mar 2020

References

  • Ahn, B. R., Moon, H. E., Kim, R. H., Jung, H. A. y., & Choi, J. S. (2012). Neuroprotective effect of edible brown alga eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells. Archives of Pharmacal Research, 35(11), 1989–1998. doi:10.1007/s12272-012-1116-5
  • Baranello, R. J., Bharani, K. L., Padmaraju, V., Chopra, N., Lahiri, D. K., Greig, N. H., … Sambamurti, K. (2015). Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Current Alzheimer Research, 12(1), 32–46. doi:10.2174/1567205012666141218140953
  • Barbosa, M., Valentão, P., & Andrade, P. B. (2014). Bioactive compounds from macroalgae inthe new millennium: Implications for neurodegenerative diseases. Marine Drugs, 12(9), 4934–4972. doi:10.3390/md12094934
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. doi:10.1063/1.448118
  • Bloom G. S. 2014. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology. 71(4):505–508. doi:10.1001/jamaneurol.2013.5847
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi:10.1002/jcc.20290
  • Castro A., & Martínez, A. 2001. Peripheral and dual binding site acetylcholinesterase inhibitors: Implications in treatment of Alzheimer’s disease. Mini Reviews in Medicinal Chemistry, 1, 267–272. doi:10.2174/1389557013406864
  • Castro-Silva, E. S., Bello, M., Hernández-Rodríguez, M., Correa-Basurto, J., Murillo-Álvarez, J. I., Rosales-Hernández, M. C., & Muñoz-Ochoa, M. (2018). In vitro and in silico evaluation of fucosterol from Sargassum horridum as potential human acetylcholinesterase inhibitor. JournalBiomolecular Structure Dynamics, 8, 1–28. doi:10.1080/07391102.2018.1505551
  • Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. European Journal of Biochemistry, 269, 5642–5648. doi:10.1046/j.1432-1033.2002.03271.x
  • Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Human molecular Genetics, 19(R1), R12–R20. doi:10.1093/hmg/ddq160
  • Coles, M., Bicknell, W., Watson, A. A., Fairlie, D. P., & Craik, D. J. (1998). Solution structure of amyloid beta-peptide (1-40) in a water-micelle environment. Is the membranespanning domain where we think it is? Biochemistry, 37 (31), 11064–11077. doi:10.1021/bi972979f
  • Colvin, M. T., Silvers, R., Ni, Q. Z., Can, T. V., Sergeyev, I., Rosay, M., … Griffin, R. G. (2016). Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. Journal of the American Chemical Society, 138(30), 9663–9674. doi:10.1021/jacs.6b05129
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. PaloAlto, CA: DeLanoScientific.
  • Dinamarca, M. C., Arrázola, M., Toledo, E., Cerpa, W. F., Hancke, J., & Inestrosa, N. C. (2008). Release of acetylcholinesterase (AChE) from β-amyloid plaques assemblies improves the spatial memory impairments in APP-transgenic mice. Chemico-Biological Interactions, 175(1-3), 142–149. doi:10.1016/j.cbi.2008.05.026
  • Dinamarca, M. C., Sagal, J. P., Quintanilla, R. A., Godoy, J. A., Arrázola, M. S., & Inestrosa, N. C. (2010). Amyloid-β-acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease. Molecular Neurodegeneration, 5(1), 4. doi:10.1186/1750-1326-5-4
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24 (16), 1999–2012. doi:10.1002/jcc.10349
  • Dutta, M. A., & Basu, S. (2020). Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils – A comparative study using MD simulations of 17–42 residues. Journal of Biomolecular Structure and Dynamics, 13, 1–26. doi:10.1080/07391102.2019.1711192
  • Eteghad, S. S., Sabermarouf, B., Mahnaz, A. M., Farhoudi, T. M., & Mahmoudi, J. (2015). Amyloid-beta: A crucial factor in Alzheimer’s disease. Medical Principles and Practice, 24, 1–10. doi:10.1159/000369101
  • Gan, S. Y., Wong, L. Z., Wong, J. W., & Tan, E. L. (2019). Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β- induced SH-SY5Ycells. International Journal of Biological Macromolecules, 121, 207–213. doi:10.1016/j.ijbiomac.2018.10.021
  • Ghorbani, M., Soleymani, H., Allahverdi, A., Shojaeilangari, S., & Naderi-Manesh, H. (2019). Effects of natural compounds on conformational properties and hairpin formation of amyloid-β42 monomer: Docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 15, 1–13. doi:10.1080/07391102.2019.1664934
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. doi:10.1002/jcc.10379
  • Gupta, S., Fallarero, A., Järvinen, P., Karlsson, D., Johnson, M. S., Vuorela, P. M., & Mohan, C. G. (2011). Discovery of dual binding site acetylcholinesterase inhibitors Identified by pharmacophore modeling and sequential virtual screening techniques. Bioorganic & Medicinal Chemistry Letters, 21, 1105–1112. doi:10.1016/j.bmcl.2010.12.131
  • Grasso, G., Leanza, L., Morbiducci, U., Danani, A., & Deriu, M. A. (2019). Aminoacid substitutions in the glycine zipper affect the conformational stability of amyloid beta fibrils. Journal of Biomolecular Structure and Dynamics, 7, 1–8. doi:10.1080/07391102.2019.1671224
  • Hernández-Rodríguez, M., Correa-Basurto, J., Martínez-Ramos, F., Padilla-Martínez, I., Benítez-Cardoza, C., Mera-Jiménez, E., & Rosales-Hernández, M. J. (2014). Design of multi-target compounds as AChE, BACE1, and amyloid-β1-42 oligomerization inhibitors: In silico and in vitro studies Alzheimers. Journal of Alzheimer’s Disease, 41 (4), 1073–1085. doi:10.3233/JAD-140471
  • Jia, L., Wang, W., Sang, J., Wei, W., Zhao, W., Lu, F., & Liu, F. (2019). Amyloidogenicity and cytotoxicity of a recombinant C-terminal His6-tagged Aβ1-42. ACS Chemical Neuroscience, 10(3), 1251–1262. doi:10.1021/acschemneuro.8b00333
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kang, I.-J., Jeon, Y. E., Yin, X. F., Nam, J.-S., You, S. G., Hong, M. S., … Kim, M.-J. (2011). Butanol extract of Ecklonia cava prevents production and aggregation of beta amyloid and reduces beta-amyloid mediated neuronal death. Food and Chemical Toxicology, 49(9), 2252–2259. doi:10.1016/j.fct.2011.06.023
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 3, 889–897. doi:10.1021/ar000033j
  • Liu, F., Ma, Z., Sang, J., & Lu, F. (2019). Edaravone inhibits the conformational transition of amyloid-β42: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 25, 1–12. doi:10.1080/07391102.2019.1632225
  • Lleo, A., Greenberg, S. M., & Growdon, J. H. (2006). Current pharmacotherapy for Alzheimer’s disease. Annual Review of Medicine, 57, 513–533. doi:10.1146/annurev.med.57.121304.131442
  • Maestro (version 10.5). New York, NY: Schrödinger, LLC, 2016-1.
  • Matharu, B., Gibson, G., Parsons, R., Huckerby, T. N., Moore, S. A., Cooper, L. J., … Austen, B. J. (2009). Galantamine inhibits β-amyloid aggregation and cytotoxicity. Journal of the Neurological Sciences, 280(1-2), 49–58. doi:10.1016/j.jns.2009.01.024
  • Melo, J. B., Sousa, C., Garcao, P., Oliveira, C. R., & Agostinho, P. (2009). Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. European Journal of Neuroscience, 29(3), 455–464. doi:10.1111/j.1460-9568.2009.06612.x
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. doi:10.1021/ct300418h
  • Molecular Operating Environment C.C.G.I. (MOE). (2014). Molecular Operating Environment. Montreal, QC: Chemical Computing Group.
  • Narang, S. S., Goyal, D., & Goyal, B. (2019). Inhibition of Alzheimer’s amyloid-β42 peptide aggregation by a bi-functional bis-tryptoline triazole: Key insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 3, 1–14. doi:10.1080/07391102.2019.1614093
  • Oh, J. H., Choi, J. S., & Nam, T. J. (2018). Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Marine Drugs, 16(10), 368. doi:10.3390/md16100368
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55(2), 383–394. doi:10.1002/prot.20033
  • Osaki, D., & Hiramatsu, H. (2016). Citrullination and deamidation affect aggregation properties of amyloid β-proteins. Amyloid, 4, 234–241. doi:10.1080/13506129.2016.1240076
  • Panek, D., Wichur, T., Godyń, J., Pasieka, A., & Malawska, B. (2017). Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Medicinal Chemistry, 9(15), 1835–1854. doi:10.4155/fmc-2017-0094
  • Pourbadie, H. G., Sayyah, M., Khoshkholgh-Sima, B., Choopani, S., Nategh, M., Motamedi, F., & Shokrgozar, M. A. (2018). Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer’s disease-related cognitive deficit in rats: Behavioral, molecular, and electrophysiological evidence. Neurobiology of Aging, 70, 203–216. doi:10.1016/j.neurobiolaging
  • Rao, P. P. N., Mohamed, T. y., & Osman, W. (2013). Investigating the binding interactions of galantamine with b-amyloid peptide. Bioorganic & Medicinal Chemistry Letters, 23, 239–243. doi:10.1016/j.bmcl.2012.10.111
  • Rouleau, J., Iorga, B. I., & Guillou, C. (2011). New potent human acetylcholinesterase inhibitors in the tetracyclic triterpene series with inhibitory potency on amyloid b aggregation. European Journal of Medicinal Chemistry, 46(6), 2193–2205. doi:10.1016/j.ejmech.2011.02.073
  • Shanmuganathan, B., Malar, D. S., Sathya, S., & Devi, P. K. (2015). Antiaggregation potential of Padina gymnospora against the toxic Alzheimer’s beta-amyloid peptide 25–35 and cholinesterase inhibitory property of its bioactive compounds. PLos One, 10(11), e0141708. doi:10.1371/journal.pone.0141708
  • Shuaib, S., Saini, R. K., Goyal, D., & Goyal, B. (2019). Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: Key insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(3), 708–721. doi:10.1080/07391102.2019.1586587
  • Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N. A., Bonvin, A. M., Guerrini, R., … Picone, D. (2006). The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: A step by step conformational analysis suggests the location of beta conformation seeding. ChemBioChem, 7 (2), 257–267. doi:10.1002/cbic.200500223
  • Turner, M., Mutter, S. T., & Platts, J. A. (2019). Molecular dynamics simulation on the effect of transition metal binding to the N-terminal fragment of amyloid-β. Journal of Biomolecular Structure and Dynamics, 37(17), 4590–4600. doi:10.1080/07391102.2018.1555490
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1977). Algorithms for macromolecular dynamics and constraint dynamics. Molecular Physics, 34(5), 1311–1327. doi:10.1080/00268977700102571
  • Villalobos Acosta, D. M. Á., C., Vega, B., C., Basurto, J., F., Morales, L. G., R., & Hernández, M. C. (2018). Recent advances by in silico and in vitro studies of amyloid-β 1-42 fibril depicted a S-shape conformation. International Journal Molecular Science, 16, 19. doi:10.3390/ijms19082415
  • Vivekanandan, S., Brender, J. R., Lee, S. Y., & Ramamoorthy, A. (2011). A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochemical and Biophysical Research Communications, 411(2), 312–316. doi:10.1016/j.bbrc.2011.06.133
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi:10.1002/jcc.20035
  • Xu, Y., Shen, J., Luo, X., Zhu, W., Chen, K., Ma, J., & Jiang, H. (2005). Conformational transition of amyloid β-peptide. Proceedings of the National Academy of Sciences, 102(15), 5403–5407. doi:10.1073/pnas.0501218102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.