285
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

The K428 residue from Thermus thermophilus SG0.5JP17-16 laccase plays the substantial role in substrate binding and oxidation

, , , &
Pages 1312-1320 | Received 15 Jan 2020, Accepted 10 Feb 2020, Published online: 21 Feb 2020

References

  • Arakane, Y., Muthukrishnan, S., Beeman, R. W., Kanost, M. R., & Kramer, K. J. (2005). Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11337–11342. doi:10.1073/pnas.0504982102
  • Bello, M., Valderrama, B., Serrano-Posada, H., & Rudiño-Piñera, E. (2012). Molecular dynamics of a thermostable multicopper oxidase from Thermus thermophilus HB27: Structural differences between the apo and holo forms. PLoS One, 7(7), e40700. doi:10.1371/journal.pone.0040700
  • Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., & Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: Insights into substrate recognition and correlation with kinetics. Biochemistry, 41(23), 7325–7333. doi:10.1021/bi0201318
  • Brissos, V., Chen, Z., & Martins, L. O. (2012). The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Dalton Transactions, 41(20), 6247–6255. doi:10.1039/c2dt12067d
  • Chen, Y., Luo, Q., Zhou, W., Xie, Z., Cai, Y. J., Liao, X. R., & Guan, Z. B. (2017). Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis. Applied Microbiology and Biotechnology, 101(5), 1935–1944. doi:10.1007/s00253-016-7962-1
  • Chen, Z., Durão, P., Silva, C. S., Pereira, M. M., Todorovic, S., Hildebrandt, P., … Martins, L. O. (2010). The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Dalton Transactions, 39(11), 2875–2882. doi:10.1039/b922734b
  • Ercan, S., Senyigit, B., & Senses, Y. (2020). Dual inhibitor design for HIV-1 reverse transcriptase and integrase enzymes: A molecular docking study. Journal of Biomolecular Structure and Dynamics, 38, 573–580. doi:10.1080/07391102.2019.1700166
  • Ge, H., Gao, Y., Hong, Y., Zhang, M., Xiao, Y., Teng, M., & Niu, L. (2010). Structure of native laccase B from Trametes sp. AH28-2. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 66(3), 254–258. doi:10.1107/S1744309110000084
  • Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: A never-ending story. Cellular and Molecular Life Sciences, 67(3), 369–385. doi:10.1007/s00018-009-0169-1
  • Giardina, P., & Sannia, G. (2015). Laccases: Old enzymes with a promising future. Cellular and Molecular Life Sciences, 72(5), 855–856. doi:10.1007/s00018-014-1821-y
  • Glazunova, O., Trushkin, N. A., Moiseenko, K. V., Filimonov, I. S., & Fedorova, T. V. (2018). Catalytic efficiency of basidiomycete laccases: Redox potential versus substrate-binding pocket structure. Catalysts, 8(4), 152. doi:10.3390/catal8040152
  • Hakulinen, N., Kiiskinen, L. L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., & Rouvinen, J. (2002). Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Structural Biology, 9(8), 601–605. doi:10.1038/nsb823
  • Hakulinen, N., & Rouvinen, J. (2015). Three-dimensional structures of laccases. Cellular and Molecular Life Sciences, 72(5), 857–868. doi:10.1007/s00018-014-1827-5
  • Jones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72(5), 869–883. doi:10.1007/s00018-014-1826-6
  • Kumbhar, B. V., Bhandare, V. V., Panda, D., & Kunwar, A. (2020). Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. Journal of biomolecular structure and Dynamics, 38, 426–438. doi:10.1080/07391102.2019.1577174
  • Liu, H., Yu, C., Du, B., Tong, C., Liang, S., Han, S., … Lin, Y. (2015). Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLos One, 10, 1–14. doi:10.1371/journal.pone.0119833
  • Liu, H., Zhu, Y., Yang, X., & Lin, Y. (2018). Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Applied Microbiology and Biotechnology, 102(9), 4049–4061. doi:10.1007/s00253-018-8875-y
  • Liu, J., Zhu, Y., He, Y., Zhu, H., Gao, Y., Li, Z., … Li, W. (2020). Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. Journal of Biomolecular Structure and Dynamics, 38, 533–547. doi:10.1080/07391102.2019.1590241
  • Liu, Z., Xie, T., Zhong, Q., & Wang, G. (2016). Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Acta Crystallographica Section F Structural Biology Communications, 72(4), 328–335. doi:10.1107/S2053230X1600426X
  • Ma, H. L., Karboune, S., & Kermasha, S. (2008). Laccase-catalyzed oxidative polymerization of selected polyphenol oligomers in organic solvent media. Journal of Biotechnology, 136, S378. doi:10.1016/j.jbiotec.2008.07.870
  • Madhavi, V., & Lele, S. S. (2009). Laccase: Properties and applications. Bioresources, 4, 1694–1717.
  • Martins, L. O., Durao, P., Brissos, V., & Lindley, P. F. (2015). Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. Cellular and Molecular Life Sciences, 72(5), 911–922. doi:10.1007/s00018-014-1822-x
  • Messerschmidt, A., Ladenstein, R., Huber, R., Bolognesi, M., Avigliano, L., Petruzzelli, R., … Finazzi-Agró, A. (1992). Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. Journal of Molecular Biology, 224(1), 179–205. doi:10.1016/0022-2836(92)90583-6
  • Moreno, A. D., Tomas-Pejo, E., Ibarra, D., Ballesteros, M., & Olsson, L. (2013). In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresource Technology, 143, 337–343. doi:10.1016/j.biortech.2013.06.011
  • Moreno, L. F., Feng, P. Y., Weiss, V. A., Vicente, V. A., Stielow, J. B., & de Hoog, S. (2017). Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. PLoS One, 12(2), e0171291. doi:10.1371/journal.pone.0171291
  • Riva, S. (2006). Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 24(5), 219–226. doi:10.1016/j.tibtech.2006.03.006
  • Rivera-Hoyos, C. M., Morales-Alvarez, E. D., Poutou-Pinales, R. A., Pedroza-Rodriguez, A. M., Rodriguez-Vazquez, R., & Delgado-Boada, J. M. (2013). Fungal laccases. Fungal Biology Reviews, 27(3-4), 67–82. doi:10.1016/j.fbr.2013.07.001
  • Roger, M., Sciara, G., Biaso, F., Lojou, E., Wang, X., Bauzan, M., … Ilbert, M. (2017). Impact of copper ligand mutations on a cupredoxin with a green copper center. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1858(5), 351–359. doi:10.1016/j.bbabio.2017.02.007
  • Sakurai, T., & Kataoka, K. (2007). Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. The Chemical Record, 7(4), 220–229. doi:10.1002/tcr.20125
  • Serrano-Posada, H., Centeno-Leija, S., Rojas-Trejo, S. P., Rodríguez-Almazán, C., Stojanoff, V., & Rudiño-Piñera, E. (2015). X-ray-induced catalytic active-site reduction of a multicopper oxidase: Structural insights into the proton-relay mechanism and O2-reduction states. Acta Crystallographica Section D Biological Crystallography, 71(12), 2396–2411. doi:10.1107/S1399004715018714
  • Sharifi, M., Karim, A. Y., Mustafa Qadir Nanakali, N., Salihi, A., Aziz, F. M., Hong, J., … Falahati, M. (2019). Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. Journal of biomolecular structure and Dynamics, 22, 1–17. doi:10.1080/07391102.2019.1643787
  • Wan, Y., Guan, S., Qian, M., Huang, H., Han, F., Wang, S., & Zhang, H. (2020). Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: Insight into the inhibitory mechanism through molecular modeling studies. Journal of biomolecular structure and Dynamics, 38, 410–425. doi:10.1080/07391102.2019.1576543
  • Wang, H., Liu, X., Zhao, J., Yue, Q., Yan, Y., Gao, Z., … Gong, Y. (2018). Crystal structures of multicopper oxidase CueO G304K mutant: Structural basis of the increased laccase activity. Scientific Reports, 8(1), 14252. doi:10.1038/s41598-018-32446-7
  • Wang, J., Wang, C. L., Zhu, M. L., Yu, Y., Zhang, Y. B., & Wei, Z. M. (2008). Generation and characterization of transgenic poplar plants overexpressing a cotton laccase gene. Plant Cell, Tissue and Organ Culture, 93(3), 303–310. doi:10.1007/s11240-008-9377-x
  • Zaballa, M. E., Abriata, L. A., Donaire, A., & Vila, A. J. (2012). Flexibility of the metal-binding region in apo-cupredoxins. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9254–9259. doi:10.1073/pnas.1119460109
  • Zafar, R., Zubair, M., Ali, S., Shahid, K., Waseem, W., Naureen, H., … Sadiq, A. (2020). Zinc metal carboxylates as potential anti-Alzheimer’s candidate: In-vitro anticholinesterase, antioxidant and molecular docking studies. Journal of Biomolecular Structure & Dynamics, 4, 1–15. doi:10.1080/07391102.2020.1724569
  • Zhukhlistova, N. E., Zhukova, Y. N., Lyashenko, A. V., Zaĭtsev, V. N., & Mikhaĭlov, A. M. (2008). Three-dimensional organization of three- domain copper oxidases: A review. Crystallography Reports, 53(1), 92–109. doi:10.1134/S1063774508010124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.