422
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane

ORCID Icon, , &
Pages 1343-1353 | Received 26 Jan 2020, Accepted 10 Feb 2020, Published online: 02 Mar 2020

References

  • Babaeva, N. Y., & Kushner, M. J. (2010). Intracellular electric fields produced by dielectric barrier discharge treatment of skin. Journal of Physics D: Applied Physics, 43(18), 185206. doi:10.1088/0022-3727/43/18/185206
  • Babaeva, N. Y., Tian, W., & Kushner, M. J. (2014). The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: Electric fields delivered to model platelets and cells. Journal of Physics D: Applied Physics, 47(23), 235201. doi:10.1088/0022-3727/47/23/235201
  • Begum, A., Laroussi, M., & Pervez, M. R. (2013). Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Advances, 3(6), 062117. doi:10.1063/1.4811464
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. New York, W. H. Freeman.
  • Berger, O., Edholm, O., & Jähnig, F. (1997). Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 72(5), 2002–2013. doi:10.1016/S0006-3495(97)78845-3
  • Bourdon, A., Darny, T., Pechereau, F., Pouvesle, J.-M., Viegas, P., Iséni, S., & Robert, E. (2016). Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture. Plasma Sources Science and Technology, 25(3), 035002. doi:10.1088/0963-0252/25/3/035002
  • Brambillasca, S., Yabal, M., Soffientini, P., Stefanovic, S., Makarow, M., Hegde, R. S., & Borgese, N. (2005). Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. The EMBO Journal, 24(14), 2533–2542. doi:10.1038/sj.emboj.7600730
  • Breton, M., & Mir, L. M. (2012). Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics, 33(2), 106–123. doi:10.1002/bem.20692
  • Casciola, M., Bonhenry, D., Liberti, M., Apollonio, F., & Tarek, M. (2014). A molecular dynamic study of cholesterol rich lipid membranes: Comparison of electroporation protocols. Bioelectrochemistry, 100, 11–17. doi:10.1016/j.bioelechem.2014.03.009
  • Casciola, M., & Tarek, M. (2016). A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858(10), 2278–2289. doi:10.1016/j.bbamem.2016.03.022
  • Cordeiro, R. M. (2014). Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1838(1), 438–444. doi:10.1016/j.bbamem.2013.09.016
  • Cwiklik, L., & Jungwirth, P. (2010). Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chemical Physics Letters, 486(4–6), 99–103. doi:10.1016/j.cplett.2010.01.010
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Das, C., Noro, M. G., & Olmsted, P. D. (2009). Simulation studies of stratum corneum lipid mixtures. Biophysical Journal, 97(7), 1941–1951. doi:10.1016/j.bpj.2009.06.054
  • Deamer, D. W., & Bramhall, J. (1986). Permeability of lipid bilayers to water and ionic solutes. Chemistry and Physics of Lipids, 40(2–4), 167–188. doi:10.1016/0009-3084(86)90069-1
  • Dehury, B., Tang, N., & Kepp, K. P. (2019). Insights into membrane-bound presenilin 2 from all-atom molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–15. doi:10.1080/07391102.2019.1655481
  • Delemotte, L., & Tarek, M. (2012). Molecular dynamics simulations of lipid membrane electroporation. The Journal of Membrane Biology, 245(9), 531–543. doi:10.1007/s00232-012-9434-6
  • Foote, C. S. (1968). Photosensitized oxygenations and the role of singlet oxygen. Accounts of Chemical Research, 1(4), 104–110. doi:10.1021/ar50004a002
  • Gehl, J. (2003). Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica Scandinavica, 177(4), 437–447. doi:10.1046/j.1365-201X.2003.01093.x
  • Glass, C. W., Reiser, S., Rutkai, G., Deublein, S., Köster, A., Guevara-Carrion, G., … Vrabec, J. (2014). ms2: A molecular simulation tool for thermodynamic properties, new version release. Computer Physics Communications, 185(12), 3302–3306. doi:10.1016/j.cpc.2014.07.012
  • Gupta, R., & Rai, B. (2018). Electroporation of skin stratum corneum lipid bilayer and molecular mechanism of drug transport: A molecular dynamics study. Langmuir, 34(20), 5860–5870. doi:10.1021/acs.langmuir.8b00423
  • Gurtovenko, A. A., Anwar, J., & Vattulainen, I. (2010). Defect-mediated trafficking across cell membranes: Insights from in silico modeling. Chemical Reviews, 110(10), 6077–6103. doi:10.1021/cr1000783
  • Gurtovenko, A. A., & Lyulina, A. S. (2014). Electroporation of asymmetric phospholipid membranes. The Journal of Physical Chemistry B, 118(33), 9909–9918. doi:10.1021/jp5028355
  • Gurtovenko, A. A., & Vattulainen, I. (2007). Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophysical Journal, 92(6), 1878–1890. doi:10.1529/biophysj.106.094797
  • Hammer, M. U., Forbrig, E., Kupsch, S., Weltmann, K.-D., & Reuter, S. (2013). Influence of plasma treatment on the structure and function of lipids. Plasma Medicine, 3(1–2), 97–114. doi:10.1615/PlasmaMed.2014009708
  • Heller, L. C., & Heller, R. (2006). In vivo electroporation for gene therapy. Human Gene Therapy, 17(9), 890–897. doi:10.1089/hum.2006.17.890
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. doi:10.1021/ct700301q
  • Hirst, A. M., Frame, F. M., Arya, M., Maitland, N. J., & O’Connell, D. (2016). Low temperature plasmas as emerging cancer therapeutics: The state of play and thoughts for the future. Tumor Biology, 37(6), 7021–7031. doi:10.1007/s13277-016-4911-7
  • Hong, S.-H., Szili, E. J., Jenkins, A. T. A., & Short, R. D. (2014). Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics D: Applied Physics, 47(36), 362001. doi:10.1088/0022-3727/48/2/029501
  • Hoover, W. G. (1986). Constant-pressure equations of motion. Physical Review A, 34(3), 2499–2500. doi:10.1103/PhysRevA.34.2499
  • Hu, Q., Joshi, R. P., & Schoenbach, K. H. (2005). Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 72(3 Pt 1), 031902. doi:10.1103/PhysRevE.72.031902
  • Hu, Q., Viswanadham, S., Joshi, R. P., Schoenbach, K. H., Beebe, S. J., & Blackmore, P. F. (2005). Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 71(3 Pt 1), 031914. doi:10.1103/PhysRevE.71.031914
  • Keidar, M., Walk, R., Shashurin, A., Srinivasan, P., Sandler, A., Dasgupta, S., … Trink, B. (2011). Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 105(9), 1295–1301. doi:10.1038/bjc.2011.386
  • Kumar, S., Yadav, D. K., Choi, E.-H., & Kim, M.-H. (2018). Insight from molecular dynamic simulation of reactive oxygen species in oxidized skin membrane. Scientific Reports, 8(1), 13271. doi:10.1038/s41598-018-31609-w
  • Lakshmanan, S., Gupta, G. K., Avci, P., Chandran, R., Sadasivam, M., Jorge, A. E., & Hamblin, M. R. (2014). Physical energy for drug delivery; poration, concentration and activation. Advanced Drug Delivery Reviews, 71, 98–114. doi:10.1016/j.addr.2013.05.010
  • Levine, Z. A., & Vernier, P. T. (2010). Life cycle of an electropore: Field-dependent and field-independent steps in pore creation and annihilation. The Journal of Membrane Biology, 236(1), 27–36. doi:10.1007/s00232-010-9277-y
  • Lis, M., Wizert, A., Przybylo, M., Langner, M., Swiatek, J., Jungwirth, P., & Cwiklik, L. (2011). The effect of lipid oxidation on the water permeability of phospholipids bilayers. Physical Chemistry Chemical Physics, 13(39), 17555–17563. doi:10.1039/c1cp21009b
  • Logani, M. K., & Davies, R. E. (1980). Lipid oxidation: Biologic effects and antioxidants – A review. Lipids, 15(6), 485–495. doi:10.1007/BF02534079
  • Lopes-Rodrigues, M., Zanuy, D., Alemán, C., Michaux, C., & Perpète, E. A. (2019). 3D structure of a Brucella melitensis porin: Molecular modelling in lipid membranes. Journal of Biomolecular Structure and Dynamics, 37(15), 3923–3935. doi:10.1080/07391102.2018.1529627
  • Maheux, S., Frache, G., Thomann, J., Clément, F., Penny, C., Belmonte, T., & Duday, D. (2016). Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment. Journal of Physics D: Applied Physics, 49(34), 344001. doi:10.1088/0022-3727/49/34/344001
  • Marrink, S. J., de Vries, A. H., & Tieleman, D. P. (2009). Lipids on the move: Simulations of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta, 1788(1), 149–168. doi:10.1016/j.bbamem.2008.10.006
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. doi:10.1103/PhysRevLett.45.1196
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. doi:10.1093/bioinformatics/btt055
  • Ratovitski, E. A., Cheng, X., Yan, D., Sherman, J. H., Canady, J., Trink, B., & Keidar, M. (2014). Anti‐cancer therapies of 21st century: Novel approach to treat human cancers using cold atmospheric plasma. Plasma Processes and Polymers, 11(12), 1128–1137. doi:10.1002/ppap.201400071
  • Robert, E., Darny, T., Dozias, S., Iseni, S., & Pouvesle, J. M. (2015). New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 22(12), 122007. doi:10.1063/1.4934655
  • Rosazza, C., Meglic, S. H., Zumbusch, A., Rols, M. P., & Miklavcic, D. (2016). Gene electrotransfer: A mechanistic perspective. Current Gene Therapy, 16(2), 98–129. doi:10.2174/1566523216666160331130040
  • Sallberg, M., Frelin, L., Ahlen, G., & Sallberg-Chen, M. (2015). Electroporation for therapeutic DNA vaccination in patients. Medical Microbiology and Immunology, 204, 131–135. doi:10.1007/s00430-014-0384-8
  • Scheffer, H. J., Nielsen, K., de Jong, M. C., van Tilborg, A. A., Vieveen, J. M., Bouwman, A. R., … Meijerink, M. R. (2014). Irreversible electroporation for nonthermal tumor ablation in the clinical setting: A systematic review of safety and efficacy. Journal of Vascular and Interventional Radiology, 25(7), 997–1011. quiz 1011. doi:10.1016/j.jvir.2014.01.028
  • Schlegel, J., Köritzer, J., & Boxhammer, V. (2013). Plasma in cancer treatment. Clinical Plasma Medicine, 1(2), 2–7. doi:10.1016/j.cpme.2013.08.001
  • Sersa, G., Teissie, J., Cemazar, M., Signori, E., Kamensek, U., Marshall, G., & Miklavcic, D. (2015). Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunology, Immunotherapy, 64(10), 1315–1327. doi:10.1007/s00262-015-1724-2
  • Shyamlal, B. R. K., Yadav, L., Tiwari, M. K. M., Mathur, M., Prikhodko, J. I., Mashevskaya, I. V., Yadav, D. K., & Chaudhary, S. (2020). Synthesis, bioevaluation, structure–activity relationship and docking studies of natural product inspired (Z)-3-benzylideneisobenzofuran-1(3H)-ones as highly potent antioxidants and antiplatelet agents. Scientific Reports, 10(1), 2307. doi:10.1038/s41598-020-59218-6
  • Sodeifian, G., & Razmimanesh, F. (2019). Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and ibuprofen. Journal of Biomolecular Structure and Dynamics, 37(7), 1666–1684. doi:10.1080/07391102.2018.1464956
  • Sretenović, G. B., Krstić, I. B., Kovačević, V. V., Obradović, B. M., & Kuraica, M. M. (2014). Spatio-temporally resolved electric field measurements in helium plasma jet. Journal of Physics D: Applied Physics, 47(10), 102001. doi:10.1088/0022-3727/47/10/102001
  • Suwattanasophon, C., Wolschann, P., & Faller, R. (2016). Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane. Journal of Biomolecular Structure and Dynamics, 34(2), 318–326. doi:10.1080/07391102.2015.1030691
  • Szili, E. J., Hong, S.-H., & Short, R. D. (2015). On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. Biointerphases, 10(2), 029511. doi:10.1116/1.4918765
  • Tarek, M. (2005). Membrane electroporation: A molecular dynamics simulation. Biophysical Journal, 88(6), 4045–4053. doi:10.1529/biophysj.104.050617
  • Tieleman, D. P., Leontiadou, H., Mark, A. E., & Marrink, S. J. (2003). Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. Journal of the American Chemical Society, 125(21), 6382–6383. doi:10.1021/ja029504i
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Vernier, P. T., Levine, Z. A., Wu, Y.-H., Joubert, V., Ziegler, M. J., Mir, L. M., & Tieleman, D. P. (2009). Electroporating fields target oxidatively damaged areas in the cell membrane. PloS One, 4(11), e7966. doi:10.1371/journal.pone.0007966
  • Vernier, P. T., Ziegler, M. J., Sun, Y., Chang, W. V., Gundersen, M. A., & Tieleman, D. P. (2006). Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. Journal of the American Chemical Society, 128(19), 6288–6289. doi:10.1021/ja0588306
  • Volinsky, R., Cwiklik, L., Jurkiewicz, P., Hof, M., Jungwirth, P., & Kinnunen, P. K. (2011). Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophysical Journal, 101(6), 1376–1384. doi:10.1016/j.bpj.2011.07.051
  • Weaver, J. C. (1993). Electroporation: A general phenomenon for manipulating cells and tissues. Journal of Cellular Biochemistry, 51(4), 426–435. doi:10.1002/jcb.2400510407
  • Weaver, J. C., Smith, K. C., Esser, A. T., Son, R. S., & Gowrishankar, T. R. (2012). A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry, 87, 236–243. doi:10.1016/j.bioelechem.2012.02.007
  • Weber, G., Charitat, T., Baptista, M. S., Uchoa, A. F., Pavani, C., Junqueira, H. C., … Schroder, A. P. (2014). Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter, 10(24), 4241–4247. doi:10.1039/c3sm52740a
  • Wong-Ekkabut, J., Xu, Z., Triampo, W., Tang, I. M., Tieleman, D. P., & Monticelli, L. (2007). Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophysical Journal, 93(12), 4225–4236. doi:10.1529/biophysj.107.112565
  • Yadav, D. K., Kumar, S., Choi, E.-H., Chaudhary, S., & Kim, M.-H. (2019). Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Scientific Reports, 9(1), 4496. doi:10.1038/s41598-019-40913-y
  • Yadav, D. K., Kumar, S., Choi, E.-H., Sharma, P., Misra, S., & Kim, M.-H. (2018a). Insight into the molecular dynamic simulation studies of reactive oxygen species in native skin membrane. Frontiers in Pharmacology, 9, 644. doi:10.3389/fphar.2018.00644
  • Yadav, D. K., Saloni, S., Misra, S., Yadav, L., Teli, M., Sharma, P., … Kim, M. H. (2018b). Molecular insights into the interaction of RONS and thieno[3,2-c]pyran analogs with SIRT6/COX-2: A molecular dynamics study. Scientific Reports, 8, 4777. doi:10.1038/s41598-018-22972-9
  • Yan, D., Talbot, A., Nourmohammadi, N., Sherman, J. H., Cheng, X., & Keidar, M. (2015). Toward understanding the selective anticancer capacity of cold atmospheric plasma—A model based on aquaporins. Biointerphases, 10(4), 040801. doi:10.1116/1.4938020
  • Yarmush, M. L., Golberg, A., Sersa, G., Kotnik, T., & Miklavcic, D. (2014). Electroporation-based technologies for medicine: Principles, applications, and challenges. Annual Review of Biomedical Engineering, 16(1), 295–320. doi:10.1146/annurev-bioeng-071813-104622
  • Zhou, D., Shao, L., & Spitz, D. R. (2014). Reactive oxygen species in normal and tumor stem cells. Advances in Cancer research, 122, 1–67. doi:10.1016/B978-0-12-420117-0.00001-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.