470
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of small molecule inhibitors of chikungunya virus proteins (nsP2 and E1) using in silico approaches

, , &
Pages 1373-1385 | Received 06 Jan 2020, Accepted 10 Feb 2020, Published online: 05 Mar 2020

References

  • Abdelnabi, R., Neyts, J., & Delang, L. (2015). Towards antivirals against chikungunya virus. Antiviral Research, 121, 59–68. doi:10.1016/j.antiviral.2015.06.017
  • Adianti, M., Aoki, C., Komoto, M., Deng, L., Shoji, I., & Wahyuni, T. S. (2014). Anti-hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiology and Immunology, 58, 180–187. doi:10.1111/1348-0421.12127
  • Ahmad, A., Kaleem, M., Ahmed, Z., & Shafiq, H. (2015). Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Research International, 77, 221–235. doi:10.1016/j.foodres.2015.06.021
  • Berman, H. M. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. doi:10.1093/nar/28.1.235
  • Calland, N., Dubuisson, J., Rouillé, Y., & Séron, K. (2012). Hepatitis C virus and natural compounds: A new antiviral approach? Viruses, 4(10), 2197–2217. doi:10.3390/v4102197
  • Cecilia, D. (2014). Current status of dengue and chikungunya in India. WHO South-East Asia Journal of Public Health, 3(1), 22–26. doi:10.4103/2224-3151.206879
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. doi:10.1021/ci300367a
  • Cheng, A., & Merz, K. M. (2003). Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. Journal of Medicinal Chemistry, 46(17), 3572–3580. doi:10.1021/jm020266b
  • Chevillon, C., Briant, L., Renaud, F., & Devaux, C. (2008). The Chikungunya threat: An ecological and evolutionary perspective. Trends in Microbiology, 16(2), 80–88. doi:10.1016/j.tim.2007.12.003
  • Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1), W53–58. doi:10.1093/nar/gku401
  • Du, J., He, Z.-D., Jiang, R.-W., Ye, W.-C., Xu, H.-X., & But, P. P.-H. (2003). Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62(8), 1235–1238. doi:10.1016/S0031-9422(02)00753-7
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. doi:10.1021/jm000292e
  • Ercan, S., Şenyiğit, B., & Şenses, Y. (2020). Dual inhibitor design for HIV-1 reverse transcriptase and integrase enzymes: A molecular docking study. Journal of Biomolecular Structure and Dynamics, 38(2), 573–580. doi:10.1080/07391102.2019.1700166
  • Galochkina, A. V., Anikin, V. B., Babkin, V. A., Ostrouhova, L. A., & Zarubaev, V. V. (2016). Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Archives of Virology, 161(4), 929–938. doi:10.1007/s00705-016-2749-3
  • Ganesan, V. K., Duan, B., & Reid, S. P. (2017). Chikungunya virus: Pathophysiology, mechanism, and modeling. Viruses, 9(12), 368. doi:10.3390/v9120368
  • Gupta, A., Sharma, P., & Jayaram, B. (2007). ParDOCK: An all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein & Peptide Letters, 14, 632–646. doi:10.2174/092986607781483831
  • Haid, S., Novodomská, A., Gentzsch, J., Grethe, C., Geuenich, S., Bankwitz, D., … Pietschmann, T. (2012). A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 143(1), 213–222.e5. doi:10.1053/j.gastro.2012.03.036
  • Intayot, P., Phumee, A., Boonserm, R., Sor-Suwan, S., Buathong, R., Wacharapluesadee, S., … Siriyasatien, P. (2019). Genetic characterization of chikungunya virus in field-caught Aedes aegypti mosquitoes collected during the recent outbreaks in 2019, Thailand. Pathogens, 8(3), E121. doi:10.3390/pathogens8030121
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(S17). doi:10.1186/1471-2105-13-S17-S7
  • K, S., Purushothaman, I., & S, R. (2017). Spectral characterisation, antiviral activities, in silico ADMET and molecular docking of the compounds isolated from Tectona grandis to chikungunya virus. Biomedicine & Pharmacotherapy, 87, 302–310. doi:10.1016/j.biopha.2016.12.069
  • Kashyap, K., & Kakkar, R. (2019). An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2019.1567388
  • Kassel, D. B. (2004). Applications of high-throughput ADME in drug discovery. Current Opinion in Chemical Biology, 8(3), 339–345. doi:10.1016/j.cbpa.2004.04.015
  • Khan, A. H., Morita, K., Parquet, Md, M. D. C., Hasebe, F., Mathenge, E. G. M., & Igarashi, A. (2002). Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. Journal of General Virology, 83(12), 3075–3084. doi:10.1099/0022-1317-83-12-3075
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. doi:10.1038/nrd1549
  • Kumar, D., Aarthy, M., Kumar, P., Singh, S. K., Uversky, V. N., & Giri, R. (2019). Targeting the NTPase site of Zika virus NS3 helicase for inhibitor discovery. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2019.1689851
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 1–16. doi:10.1155/2013/162750
  • Kumar, P., Saumya, K. U., & Giri, R. (2019). Identification of peptidomimetic compounds as potential inhibitors against MurA enzyme of Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 1–21. doi:10.1080/07391102.2019.1696231
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. doi:10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. doi:10.1016/S0169-409X(00)00129-0
  • Martiny, V. Y., Carbonell, P., Lagorce, D., Villoutreix, B. O., Moroy, G., & Miteva, M. A. (2013). In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PLoS One, 8(9), e73587. doi:10.1371/journal.pone.0073587
  • Mirza, M. U., Ghori, N.-U.-H., Ikram, N., Adil, A. R., & Manzoor, S. (2015). Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors. Drug Design, Development and Therapy, 9, 1825–1841. doi:10.2147/DDDT.S75886
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. doi:10.1002/jcc.21256
  • Oldendorf, W. H. (1974). Lipid solubility and drug penetration of the blood brain barrier. Proceedings of the Society for Experimental Biology and Medicine, 147(3), 813–815. doi:10.3181/00379727-147-38444
  • Oo, A., Hassandarvish, P., Chin, S. P., Lee, V. S., Abu Bakar, S., & Zandi, K. (2016). In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ, 4, e2602. doi:10.7717/peerj.2602
  • Peterson, D. M. (1991). Genotype and environment effects on oat beta-glucan concentration. Crop Science, 31(6), 1517–1520. doi:10.2135/cropsci1991.0011183X003100060025x
  • Powers, A. M., & Logue, C. H. (2007). Changing patterns of chikungunya virus: Re-emergence of a zoonotic arbovirus. Journal of General Virology, 88(9), 2363–2377. doi:10.1099/vir.0.82858-0
  • Raghuraman, A., Tiwari, V., Zhao, Q., Shukla, D., Debnath, A. K., & Desai, U. R. (2007). Viral inhibition studies on sulfated lignin, a chemically modified biopolymer and a potential mimic of heparan sulfate. Biomacromolecules, 8(5), 1759–1763. doi:10.1021/bm0701651
  • Saisawang, C., Saitornuang, S., Sillapee, P., Ubol, S., Smith, D. R., & Ketterman, A. J. (2015). Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine. Scientific Reports, 5, 17125. doi:10.1038/srep17125
  • Sankar, M., Langeswaran, K., Jeyachandran, S., & Pandi, B. (2020). Screening of inhibitors as potential remedial against Ebolavirus infection: Pharmacophore-based approach. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2020.1715260
  • Schwartz, O., & Albert, M. L. (2010). Biology and pathogenesis of chikungunya virus. Nature Reviews Microbiology, 8(7), 491–500. doi:10.1038/nrmicro2368
  • Seyedi, S. S., Shukri, M., Hassandarvish, P., Oo, A., Shankar, E. M., Abubakar, S., & Zandi, K. (2016). Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Scientific Reports, 6, 24027. doi:10.1038/srep24027
  • Singh, T., Biswas, D., & Jayaram, B. (2011). AADS - an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. Journal of Chemical Information and Modeling, 51(10), 2515–2527. doi:10.1021/ci200193z
  • Solignat, M., Gay, B., Higgs, S., Briant, L., & Devaux, C. (2009). Replication cycle of chikungunya: A re-emerging arbovirus. Virology, 393(2), 183–197. doi:10.1016/j.virol.2009.07.024
  • Song, J.-M., Lee, K.-H., & Seong, B.-L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68(2), 66–74. doi:10.1016/j.antiviral.2005.06.010
  • Sreekumar, E., Issac, A., Nair, S., Hariharan, R., Janki, M. B., Arathy, D. S., … Pillai, M. R. (2010). Genetic characterization of 2006–2008 isolates of Chikungunya virus from Kerala, South India, by whole genome sequence analysis. Virus Genes, 40(1), 14–27. doi:10.1007/s11262-009-0411-9
  • Staikowsky, F., Le Roux, K., Schuffenecker, I., Laurent, P., Grivard, P., Develay, A., & Michault, A. (2008). Retrospective survey of Chikungunya disease in Réunion Island hospital staff. Epidemiology and Infection, 136(2), 196–206. doi:10.1017/S0950268807008424
  • Tsai, F.-J., Lin, C.-W., Lai, C.-C., Lan, Y.-C., Lai, C.-H., Hung, C.-H., … Lin, Y.-J. (2011). Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chemistry, 128(2), 312–322. doi:10.1016/j.foodchem.2011.03.022
  • Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E., & Higgs, S. (2007). A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens, 3(12), e201. doi:10.1371/journal.ppat.0030201
  • Voss, J. E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., … Rey, F. A. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 468(7324), 709–712. doi:10.1038/nature09555
  • Wang, H.-Q., Meng, S., Li, Z.-R., Peng, Z.-G., Han, Y.-X., Guo, S.-S., … Jiang, J.-D. (2013). The antiviral effect of 7-hydroxyisoflavone against Enterovirus 71 in vitro. Journal of Asian Natural Products Research, 15(4), 382–389. doi:10.1080/10286020.2013.770737
  • Wang, J., Zhang, T., Du, J., Cui, S., Yang, F., & Jin, Q. (2014). Anti-enterovirus 71 effects of chrysin and its phosphate ester. PLoS One, 9(3), e89668. doi:10.1371/journal.pone.0089668
  • Wolohan, P. R. N., & Clark, R. D. (2003). Predicting drug pharmacokinetic properties using molecular interaction fields and SIMCA. Journal of Computer-Aided Molecular Design, 17(1), 65–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12926856.
  • Yergolkar, P., Tandale, B., Arankalle, V., Sathe, P., Gandhe, S., Gokhle, M., … A.B, S. (2006). Chikungunya outbreaks caused by African genotype, India. Emerging Infectious Diseases, 12(10), 1580–1583. doi:10.3201/eid1210.060529
  • Zandi, K., Lani, R., Wong, P.-F., Teoh, B.-T., Sam, S.-S., Johari, J., … AbuBakar, S. (2012). Flavone enhances dengue virus type-2 (NGC strain) infectivity and replication in vero cells. Molecules, 17(3), 2437–2445. doi:10.3390/molecules17032437
  • Zhao, Y. H., Abraham, M. H., Le, J., Hersey, A., Luscombe, C. N., Beck, G., … Cooper, I. (2002). Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical Research, 19(10), 1446–1457. doi:10.1023/A:1020444330011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.