1,186
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: a putative prophylactic solution for the deadly virus

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1461-1480 | Received 30 Jul 2019, Accepted 17 Feb 2020, Published online: 04 Mar 2020

References

  • Ahmad, K. (2000). Malaysia culls pigs as Nipah virus strikes again. The Lancet, 356(9225), 230. doi:10.1016/S0140-6736(05)74483-4
  • Ang, B. S. P., Lim, T. C. C., & Wang, L. (2018). Nipah Virus Infection. Journal of Clinical Microbiology, 56(6), e01875–01817. doi:10.1128/JCM.01875-17
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering Design and Selection, 14(8), 529–532. doi:10.1093/protein/14.8.529
  • Bappy, S. S., Sultana, S., Adhikari, J., Mahmud, S., Khan, M. A., Kaderi Kibria, K. M., … Shibly, A. Z. (2020). Extensive Immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against Envelope protein of Chikungunya virus: A Computational Biology Approach. Journal of Biomolecular Structure and Dynamics, 1–30. doi:10.1080/07391102.2020.1726815
  • Bhattacharya, M., Malick, R. C., Mondal, N., Patra, P., Pal, B. B., Patra, B. C., & Kumar Das, B. (2020). Computational characterization of epitopic region within the outer membrane protein candidate in Flavobacterium columnare for vaccine development. Journal of Biomolecular Structure and Dynamics, 38(2), 450–459. doi:10.1080/07391102.2019.1580222
  • Billiau, A. (1996). Interferon-gamma: Biology and role in pathogenesis. Advances in Immunology, 62, 61–130. doi:10.1016/s0065-2776(08)60428-9
  • Boehm, U., Klamp, T., Groot, M., & Howard, J. C. (1997). Cellular responses to interferon-gamma. Annual Review of Immunology, 15(1), 749–795. doi:10.1146/annurev.immunol.15.1.749
  • Bossart, K., Rockx, B., Feldmann, F., Brining, D., Scott, D., LaCasse, R., … Hickey, A. (2012). A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Science Translational Medicine., 4, 146ra107. doi:10.1126/scitranslmed.3004241
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153. doi:10.1186/1471-2105-7-153
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., … Peters, B. (2013). Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLOS Computational Biology, 9(10), e1003266. doi:10.1371/journal.pcbi.1003266
  • Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., … Mahy, B. W. J. (2000). Nipah virus: A recently emergent deadly paramyxovirus. Science, 288(5470), 1432–1435. doi:10.1126/science.288.5470.1432
  • Clayton, B. A. (2017). Nipah virus: Transmission of a zoonotic paramyxovirus. Current Opinion in Virology, 22, 97–104. doi:10.1016/j.coviro.2016.12.003
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14(1), 346. doi:10.1186/1471-2105-14-346
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 30. doi:10.1186/1745-6150-8-30
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. doi:10.1007/s00894-014-2278-5
  • Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS Letters, 588(2), 206–212. doi:10.1016/j.febslet.2013.11.024
  • Dorosti, H., Eslami, M., Negahdaripour, M., Ghoshoon, M. B., Gholami, A., Heidari, R., … Ghasemi, Y. (2019). Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. Journal of Biomolecular Structure and Dynamics, 37(13), 3524–3535. doi:10.1080/07391102.2018.1519460
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. doi:10.1186/1471-2105-8-4
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition, 21(4), 243–255. doi:10.1002/jmr.893
  • Fievez, V., Plapied, L., Plaideau, C., Legendre, D., Des Rieux, A., Pourcelle, V., … Schneider, Y. J. (2010). In vitro identification of targeting ligands of human M cells by phage display. International Journal of Pharmaceutics., 394(1-2), 35–42. doi:10.1016/j.ijpharm.2010.04.023
  • Fraser, C. C., H. Altreuter, D., Ilyinskii, P., Pittet, L., LaMothe, R. A., Keegan, M., … Kishimoto, T. K. (2014). Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and non-human primates. Vaccine, 32(24), 2896–2903. doi:10.1016/j.vaccine.2014.02.024
  • Germain, R. N. (1994). MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell, 76(2), 287–299. doi:10.1016/0092-8674(94)90336-0
  • Glennon, E. E., Restif, O., Sbarbaro, S. R., Garnier, R., Cunningham, A. A., Suu-Ire, R. D., … Peel, A. J. (2018). Domesticated animals as hosts of henipaviruses and filoviruses: A systematic review. The Veterinary Journal, 233, 25–34. doi:10.1016/j.tvjl.2017.12.024
  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research., 33(Web Server), W526–531. doi:10.1093/nar/gki376
  • Gupta, N., Khatoon, N., Mishra, A., Verma, V. K., & Prajapati, V. K. (2019). Structural vaccinology approach to investigate the virulent and secretory proteins of Bacillus anthracis for devising anthrax next-generation vaccine. Journal of Biomolecular Structure and Dynamics, 1–11. doi:10.1080/07391102.2019.1688197
  • Hasan, M., Islam, S., Chakraborty, S., Mustafa, A. H., Azim, K. F., Joy, Z. F., … Hasan, M. N. (2019). Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2019.1647286
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(W1), W384–388. doi:10.1093/nar/gkt458
  • Kamthania, M., & Sharma, D. K. (2015). Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: An immunoinformatic approach for designing peptide-based vaccine. 3 Biotech, 5(6), 877–882. doi:10.1007/s13205-015-0303-8
  • Khatoon, N., Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2019). Exploratory algorithm to devise multi-epitope subunit vaccine by investigating Leishmania donovani membrane proteins. Journal of Biomolecular Structure and Dynamics, 37(9), 2381–2393. doi:10.1080/07391102.2018.1484815
  • Kong, D., Wen, Z., Su, H., Ge, J., Chen, W., Wang, X., … Bu, Z. (2012). Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology, 432(2), 327–335. doi:10.1016/j.virol.2012.06.001
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., … Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. doi:10.1038/nprot.2016.169
  • Kumar, N., Singh, A., Grover, S., Kumari, A., Kumar Dhar, P., Chandra, R., & Grover, A. (2019). HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. Journal of Biomolecular Structure and Dynamics, 37(8), 2098–2109. doi:10.1080/07391102.2018.1477620
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. doi:10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Lo, M. K., Bird, B. H., Chattopadhyay, A., Drew, C. P., Martin, B. E., Coleman, J. D., … Spiropoulou, C. F. (2014). Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Research, 101, 26–29. doi:10.1016/j.antiviral.2013.10.012
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936–2943. doi:10.1093/bioinformatics/btq551
  • McEachern, J. A., Bingham, J., Crameri, G., Green, D. J., Hancock, T. J., Middleton, D., … Bossart, K. N. (2008). A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine, 26(31), 3842–3852. doi:10.1016/j.vaccine.2008.05.016
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404–405. doi:10.1093/bioinformatics/16.4.404
  • Mehand, M. S., Al-Shorbaji, F., Millett, P., & Murgue, B. (2018). The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Research, 159, 63–67. doi:10.1016/j.antiviral.2018.09.009
  • Mire, C. E., Versteeg, K. M., Cross, R. W., Agans, K. N., Fenton, K. A., Whitt, M. A., & Geisbert, T. W. (2013). Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virology Journal, 10(1), 353. doi:10.1186/1743-422X-10-353
  • Mohd Nor, M. N., Gan, C. H., & Ong, B. L. (2000). Nipah virus infection of pigs in peninsular Malaysia. Revue Scientifique et Technique de L'oie, 19(1), 160–165. doi:10.20506/rst.19.1.1202
  • Nain, Z., Abdulla, F., Rahman, M. M., Karim, M. M., Khan, M. S. A., Sayed, S. B., … Adhikari, U. K. (2019). Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 1–18. doi:10.1080/07391102.2019.1692072
  • Ong, K. C., & Wong, K. T. (2015). Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathology, 25(5), 605–613. doi:10.1111/bpa.12278
  • Oppenheim, J. J., Biragyn, A., Kwak, L. W., & Yang, D. (2003). Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis, 62(Suppl 2), ii17–21. doi:10.1136/ard.62.suppl_2.ii17
  • Parvege, M. M., Rahman, M., Nibir, Y. M., & Hossain, M. S. (2016). Two highly similar LAEDDTNAQKT and LTDKIGTEI epitopes in G glycoprotein may be useful for effective epitope based vaccine design against pathogenic Henipavirus. Computational Biology and Chemistry, 61, 270–280. doi:10.1016/j.compbiolchem.2016.03.001
  • Pasala, C., Chilamakuri, C. S. R., Katari, S. K., Nalamolu, R. M., Bitla, A. R., & Amineni, U. (2019). Epitope-driven common subunit vaccine design against H. pylori strains. Journal of Biomolecular Structure and Dynamics, 37(14), 3740–3750. doi:10.1080/07391102.2018.1526714
  • People, N. I., Group, H. S., Bhargava, B., Arunkumar, G., Mourya, D. T., Sadanandan, R., … Singh, S. K. (2018). Outbreak Investigation of Nipah Virus Disease in Kerala, India, 2018. doi:10.1093/infdis/jiy612
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of computational Chemistry, 26(16), 1781–1802. doi:10.1002/jcc.20289
  • Prescott, J., DeBuysscher, B. L., Feldmann, F., Gardner, D. J., Haddock, E., Martellaro, C., … Feldmann, H. (2015). Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine, 33(24), 2823–2829. doi:10.1016/j.vaccine.2015.03.089
  • Ravichandran, L., Venkatesan, A., & Febin Prabhu Dass, J. (2019). Epitope-based immunoinformatics approach on RNA-dependent RNA polymerase (RdRp) protein complex of Nipah virus (NiV). Journal of Cellular Biochemistry, 120(5), 7082–7095. doi:10.1002/jcb.27979
  • Sabetian, S., Nezafat, N., Dorosti, H., Zarei, M., & Ghasemi, Y. (2019). Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. Journal of Biomolecular Structure and Dynamics, 37(10), 2546–2563. doi:10.1080/07391102.2018.1491890
  • Saha, C. K., Mahbub Hasan, M., Saddam Hossain, M., Asraful Jahan, M., & Azad, A. K. (2017). In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pacific Journal of Tropical Medicine, 10(6), 529–538. doi:10.1016/j.apjtm.2017.06.016
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server), W202–W209. doi:10.1093/nar/gkl343
  • Sakib, M. S., Islam, M. R., Hasan, A. K. M. M., & Nabi, A. H. M. N. (2014). Prediction of Epitope-Based Peptides for the Utility of Vaccine Development from Fusion and Glycoprotein of Nipah Virus Using In Silico Approach. Advances in Bioinformatics, 2014, 1–17. doi:10.1155/2014/402492
  • Satterfield, B. A., Cross, R. W., Fenton, K. A., Agans, K. N., Basler, C. F., Geisbert, T. W., & Mire, C. E. (2015). The immunomodulating V and W proteins of Nipah virus determine disease course. Nature Communications, 6(1), 7483–7483. doi:10.1038/ncomms8483
  • Satterfield, B. A., Dawes, B. E., & Milligan, G. N. (2016). Status of vaccine research and development of vaccines for Nipah virus. Vaccine, 34(26), 2971–2975. doi:10.1016/j.vaccine.2015.12.075
  • Satterfield, B. A., Geisbert, T. W., & Mire, C. E. (2016). Inhibition of the host antiviral response by Nipah virus: Current understanding and future perspectives. Future Virology, 11(5), 331–344. doi:10.2217/fvl-2016-0027
  • Shaw, M. L., Cardenas, W. B., Zamarin, D., Palese, P., & Basler, C. F. (2005). Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like Receptor 3-Triggered Signaling Pathways. Journal of Virology, 79(10), 6078–6088. doi:10.1128/JVI.79.10.6078-6088.2005
  • Shaw, M. L., García-Sastre, A., Palese, P., & Basler, C. F. (2004). Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. Journal of Virology, 78(11), 5633–5641. doi:10.1128/JVI.78.11.5633-5641.2004
  • Srivastava, S., Kamthania, M., Kumar Pandey, R., Kumar Saxena, A., Saxena, V., Kumar Singh, S., … Sharma, N. (2019). Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. Journal of Biomolecular Structure and Dynamics, 37(16), 4345–4360. doi:10.1080/07391102.2018.1548977
  • Tosta, S. F. D O., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., … Alcantara, L. C. J. (2019). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 1–17. doi:10.1080/07391102.2019.1707120
  • Ul-Rahman, A., & Shabbir, M. A. B. (2019). In silico analysis for development of epitopes-based peptide vaccine against Alkhurma hemorrhagic fever virus. Journal of Biomolecular Structure and Dynamics, 1–13. doi:10.1080/07391102.2019.1651673
  • Wang, P., Sidney, J., Dow, C., Mothe, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computational Biology., 4(4), e1000048. doi:10.1371/journal.pcbi.1000048
  • Weatherman, S., Feldmann, H., & de Wit, E. (2018). Transmission of henipaviruses. Current Opinion in Virology, 28, 7–11. doi:10.1016/j.coviro.2017.09.004
  • Weingartl, H. M., Berhane, Y., Caswell, J. L., Loosmore, S., Audonnet, J.-C., Roth, J. A., & Czub, M. (2006). Recombinant Nipah Virus Vaccines Protect Pigs against Challenge. Journal of Virology, 80(16), 7929–7938. doi:10.1128/JVI.00263-06
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, N.J.), 112, 531–552. doi:10.1385/1-59259-584-7:531
  • Wu, F., Bhansali, S. G., Law, W. C., Bergey, E. J., Prasad, P. N., & Morris, M. E. (2012). Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: Molecular weight dependence. Pharmaceutical Research, 29(7), 1843–1853. doi:10.1007/s11095-012-0708-6
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. doi:10.1038/nmeth.3213
  • Yin, S., Ding, F., & Dokholyan, N. V. (2007). Eris: An automated estimator of protein stability. Nature Methods, 4(6), 466–467. doi:10.1038/nmeth0607-466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.