159
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Elucidation of molecular interactions between human γD-crystallin and quercetin, an inhibitor against tryptophan oxidation

, , &
Pages 1811-1818 | Received 28 Jan 2020, Accepted 02 Mar 2020, Published online: 18 Mar 2020

References

  • Affandi, I. S. M., Lee, W. Q., Feroz, S. R., Mohamad, S. B., & Tayyab, S. (2017). Interaction of stattic, a STAT3 inhibitor with human serum albumin: Spectroscopic and computational study. Journal of Biomolecular Structure and Dynamics, 35(16), 3581–3590. doi:10.1080/07391102.2016.1264887
  • Barik, A., Mishra, B., Kunwar, A., & Priyadarsini, K. I. (2007). Interaction of curcumin with human serum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chemical Physics Letters, 436(13), 239–243. doi:10.1016/j.cplett.2007.01.006
  • Brovarets’, O. O., & Hovorun, D. M. (2019a). Conformational diversity of the quercetin molecule: A quantum-chemical view. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2019.1656671
  • Brovarets’, O. O., & Hovorun, D. M. (2019b). Conformational transitions of the quercetin molecule via the rotations of its rings: A comprehensive theoretical study. Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2019.1645734
  • Brovarets’, O. O., & Hovorun, D. M. (2019c). A new era of the prototropic tautomerism of the quercetin molecule: A QM/QTAIM computational advances. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2019.1691660
  • Chaudhury, S., Bag, S., Bose, M., Das, A. K., Ghosh, A. K., & Dasgupta, S. (2016). Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: Spectroscopic and docking studies. Molecular Biosystems, 12(9), 2901–2909. doi:10.1039/C6MB00256K
  • Chaudhury, S., Ghosh, I., Saha, G., & Dasgupta, S. (2015). EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2. International Journal of Biological Macromolecules, 77, 287–292. doi:10.1016/j.ijbiomac.2015.03.040
  • Chaudhury, S., Roy, P., & Dasgupta, S. (2017). Green tea flavanols protect human γB-crystallin from oxidative photodamage. Biochimie, 137, 46–55. doi:10.1016/j.biochi.2017.02.016
  • Chauhan, P., Muralidharan, S. B., Velappan, A. B., Datta, D., Pratihar, S., Debnath, J., & Ghosh, K. S. (2017). Inhibition of copper-mediated aggregation of human γD-crystallin by Schiff bases. JBIC Journal of Biological Inorganic Chemistry, 22(4), 505–517. doi:10.1007/s00775-016-1433-0
  • Chen, J., Flaugh, S. L., Callis, P. R., & King, J. (2006). Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD crystallin. Biochemistry, 45(38), 11552–11563. doi:10.1021/bi060988v
  • Chen, J., Toptygin, D., Brand, L., & King, J. (2008). Mechanism of the efficient tryptophan fluorescence quenching in human γD-crystallin studied by time-resolved fluorescence. Biochemistry, 47(40), 10705–10721. doi:10.1021/bi800499k
  • Cornish, K. M., Williamson, G., & Sanderson, J. (2002). Quercetin metabolism in the lens: Role in inhibition of hydrogen peroxide induced cataract. Free Radical Biology and Medicine, 33(1), 63–70. doi:10.1016/S0891-5849(02)00843-2
  • Das, S., Bora, N., Rohman, M. A., Sharma, R., Jha, A. N., & Singha Roy, A. (2018). Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 20(33), 21668–21684. doi:10.1039/C8CP02760A
  • Fujii, N., Uchida, H., & Saito, T. (2004). The damaging effect of UV-C irradiation on lens alpha-crystallin. Molecular Vision, 10, 814–820.
  • Hains, P. G., & Truscott, R. J. (2007). Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. Journal of Proteome Research, 6(10), 3935–3943. doi:10.1021/pr070138h
  • Hains, P. G., & Truscott, R. J. (2008). Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses. Biochimica et Biophysica Acta (Bba) - Proteins and Proteomics, 1784(12), 1959–1964. doi:10.1016/j.bbapap.2008.07.016
  • Han, X., Mei, P., Liu, Y., Xiao, Q., Jiang, F., & Li, R. (2009). Binding interaction of quinclorac with bovine serum albumin: A biophysical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(3), 781–787. doi:10.1016/j.saa.2009.08.018
  • Hanson, S. R., Hasan, A., Smith, D. L., & Smith, J. B. (2000). The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Experimental Eye Research, 71(2), 195–207. doi:10.1006/exer.2000.0868
  • Javadzadeh, A., Ghorbanihaghjo, A., Bonyadi, S., Rashidi, M. R., Mesgari, M., Rashtchizadeh, N., & Argani, H. (2009). Preventive effect of onion juice on selenite-induced experimental cataract. Indian Journal of Ophthalmology, 57(3), 185–189. doi:10.4103/0301-4738.49391
  • Jiang, M., Xie, M. X., Zheng, D., Liu, Y., Li, X. Y., & Cheng, X. (2004). Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. Journal of Molecular Structure, 692, 71–80. doi:10.1016/j.molstruc.2004.01.003
  • Kabir, M. Z., Feroz, S. R., Mukarram, A. K., Alias, Z., Mohamad, S. B., & Tayyab, S. (2016). Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Journal of Biomolecular Structure and Dynamics, 34(8), 1693–1704. doi:10.1080/07391102.2015.1089187
  • Kabir, M. Z., Ghani, H., Mohamad, S. B., Alias, Z., & Tayyab, S. (2018). Interactive association between RhoA transcriptional signaling inhibitor, CCG1423 and human serum albumin: Biophysical and in silico studies. Journal of Biomolecular Structure and Dynamics, 36(10), 2495–2507. doi:10.1080/07391102.2017.1360207
  • Khan, M. S., Tabrez, S., Al-Okail, M. S., Shaik, G. M., Bhat, S. A., Rehman, T. M., Husain, F. M., & AlAjmi, M. F. (2020). Non-enzymatic glycation of protein induces cancer cell proliferation and its inhibition by quercetin: Spectroscopic, cytotoxicity and molecular docking studies. Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1715838
  • Kurzel, R. B., Wolbarsht, M., Yamanashi, B. S., Staton, G. W., & Borkman, R. F. (1973). Tryptophan excited states and cataracts in the human lens. Nature, 241(5385), 132–133. doi:10.1038/241132a0
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy, 3rd ed. New York, USA: Springer.
  • Linetsky, M., & Ortwerth, B. J. (1995). The generation of hydrogen peroxide by the UVA irradiation of human lens proteins. Photochemistry and Photobiology, 62(1), 87–93. doi:10.1111/j.1751-1097.1995.tb05243.x
  • Linetsky, M., & Ortwerth, B. J. (1997). Quantitation of the singlet oxygen produced by UVA irradiation of human lens proteins. Photochemistry and Photobiology, 65(3), 522–529. doi:10.1111/j.1751-1097.1997.tb08598.x
  • Linetsky, M., James, H. L., & Ortwerth, B. J. (1996). The generation of superoxide anion by the UVA irradiation of human lens proteins. Experimental Eye Research, 63(1), 67–74. doi:10.1006/exer.1996.0092
  • Manikandan, R., Thiagarajan, R., Beulaja, S., Sudhandiran, G., & Arumugam, M. (2010). Effect of curcumin on selenite-induced cataractogenesis in Wistar rat pups. Current Eye Research, 35(2), 122–129. doi:10.3109/02713680903447884
  • Miteva, M. A., Guyon, F., & Tufféry, P. (2010). Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Research, 38(Web Server), W622–627. doi:10.1093/nar/gkq325
  • Mohan, M., Gupta, S. K., Agnihotri, S., Joshi, S., & Uppal, R. K. (1988). Anticataract action of topical quercetin and myricetin in galactosemic rats. Medical Science Research, 6, 685–686.
  • Pirie, A. (1971). Formation of N-formyl kynurenine in proteins from lens and other sources by exposure to sunlight. Biochemical Journal, 125(1), 203–208. doi:10.1042/bj1250203
  • Rana, S., & Ghosh, K. S. (2020). Protective role of hesperetin against posttranslational oxidation of tryptophan residue of human γD-crystallin: A molecular level study. Archives of Biochemistry and Biophysics, 679, 108204. doi:10.1016/j.abb.2019.108204
  • Rana, S., Velappan, A. B., Debnath, J., & Ghosh, K. S. (2019). Inhibition of copper-induced aggregation of human γD-crystallin by a diimine molecule and investigations on their molecular interactions. Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2019.1686426
  • Rooban, B. N., Lija, Y., Biju, P. G., Sasikala, V., Sahasranamam, V., & Abraham, A. (2009). Vitex negundo attenuates calpain activation and cataractogenesis in selenite models. Experimental Eye Research, 88(3), 575–582. doi:10.1016/j.exer.2008.11.020
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing stability. Biochemistry, 20(11), 3096–3102. doi:10.1021/bi00514a017
  • Sanderson, J., McLauchlan, W. R., & Williamson, G. (1999). Quercetin inhibits hydrogen peroxide-induced oxidation of the rat lens. Free Radical Biology and Medicine, 26(56), 639–645. doi:10.1016/S0891-5849(98)00262-7
  • Schafheimer, N., & King, J. (2013). Tryptophan cluster protects human γD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochemistry and Photobiology, 89(5), 1106–1115. doi:10.1111/php.12096
  • Serebryany, E., & King, J. A. (2015). Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. Journal of Biological Chemistry, 290(18), 11491–11503. doi:10.1074/jbc.M114.621581
  • Serebryany, E., Takata, T., Erickson, E., Schafheimer, N., Wang, Y., & King, J. A. (2016). Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Protein Science, 25(6), 1115–1128. doi:10.1002/pro.2924
  • Sharma, K. K., & Santhoshkumar, P. (2009). Lens aging: Effects of crystallins. Biochimica et Biophysica Acta (Bba) - General Subjects, 1790(10), 1095–1108. doi:10.1016/j.bbagen.2009.05.008
  • Siddiqui, T., Zia, M. K., Ahsan, H., & Khan, F. H. (2019). Quercetin-induced inactivation and conformational alterations of alpha-2-macroglobulin: Multi-spectroscopic and calorimetric study. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2019.1671232
  • Spector, A. (1995). Oxidative stress-induced cataract: Mechanism of action. The FASEB Journal, 9(12), 1173–1182. doi:10.1096/fasebj.9.12.7672510
  • Stefek, M. (2011). Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdisciplinary Toxicology, 4(2), 69–77. doi:10.2478/v10102-011-0013-y
  • Thiagarajan, G., Chandani, S., Sundari, S. C., Harinarayana Rao, S., Kulkarni, V. A., & Balasubramanian, D. (2001). Antioxidant properties of green and black tea, and their potential ability to retard the progression of eye lens cataract. Experimental Eye Research, 73(3), 393–401. doi:10.1006/exer.2001.1049
  • Truscott, R. J. (2005). Age-related nuclear cataract-oxidation is the key. Experimental Eye Research, 80(5), 709–725. doi:10.1016/j.exer.2004.12.007
  • van Boekel, M. A., & Hoenders, H. J. (1992). Glycation of crystallins in lenses from aging and diabetic individuals. FEBS Letters, 314(1), 1–4. doi:10.1016/0014-5793(92)81446-s
  • Vibin, M., Siva, P. S. G., Rooban, B. N., Sasikala, V., Sahasranamam, V., & Abraham, A. (2010). Broccoli regulates protein alterations and cataractogenesis in selenite models. Current Eye Research, 35(2), 99–107. doi:10.3109/02713680903428991
  • Vinnarasi, S., Radhika, R., Vijayakumar, S., & Shankar, R. (2020). Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(2), 317–339. doi:10.1080/07391102.2019.1574239
  • Vinson, J. A. (2006). Oxidative stress in cataracts. Pathophysiology, 13(3), 151–162. doi:10.1016/j.pathophys.2006.05.006
  • Weiter, J. J., & Finch, E. D. (1975). Paramagnetic species in cataractous human lenses. Nature, 254(5500), 536–537. doi:10.1038/254536a0
  • Wilmarth, P. A., Tanner, S., Dasari, S., Nagalla, S. R., Riviere, M. A., Bafna, V., Pevzner, P. A., & David, L. L. (2006). Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: Does deamidation contribute to crystallin insolubility? Journal of Proteome Research, 5(10), 2554–2566. doi:10.1021/pr050473a
  • Xia, Z., Yang, Z., Huynh, T., King, J. A., & Zhou, R. (2013). UV-radiation induced disruption of dry-cavities in human γD-crystallin results in decreased stability and faster unfolding. Scientific Reports, 3(1), 1560. doi:10.1038/srep01560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.