232
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Deciphering the impact of missense mutations on structure and dynamics of SMAD4 protein involved in pathogenesis of gall bladder cancer

ORCID Icon, , ORCID Icon, , , , , & show all
Pages 1940-1954 | Received 18 Jul 2019, Accepted 04 Mar 2020, Published online: 17 Mar 2020

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. doi:10.1038/nmeth0410-248
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. doi:10.1002/prot.340170408
  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M. J., Natale D. A., O'Donovan C., Redaschi N., Yeh L. S. (2004). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 32(90001), 115D–D119. doi:10.1093/nar/gkh131
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. doi:10.1371/journal.pcbi.1003440
  • Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71(1), 261–277. doi:10.1002/prot.21715
  • Berendsen, H. J. (1999). Molecular dynamics simulations: The limits and beyond. In P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, R. D. Skeel (Eds), Computational Molecular Dynamics: Challenges, Methods, Ideas (pp. 3–36). Springer.
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. doi:10.3322/caac.21492
  • Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35(11), 3823–3835. doi:10.1093/nar/gkm238
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734. doi:10.1093/bioinformatics/btl423
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics., 14(3), S6.
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2. 0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server), W306–W310., doi:10.1093/nar/gki375
  • Chintapalli, S. V., Illingworth, C. J., Upton, G. J., Sacquin-Mora, S., Reeves, P. J., Mohammedali, H. S., & Reynolds, C. A. (2014). Assessing the effect of dynamics on the closed-loop protein-folding hypothesis. Journal of the Royal Society Interface, 11(91), 20130935. doi:10.1098/rsif.2013.0935
  • Colak, S., & ten Dijke, P. (2017). Targeting TGF-β signaling in cancer. Trends in Cancer, 3(1), 56–71. doi:10.1016/j.trecan.2016.11.008
  • Craveur, P., Joseph, A. P., Esque, J., Narwani, T. J., NoëL, F., Shinada, N., Goguet, M., Leonard, S., Poulain, P., Bertrand, O., Faure, G., Rebehmed, J., Ghozlane, A., Swapna, L. S., Bhaskara, R. M., Barnoud, J., Téletchéa, S., Jallu, V., Cerny, J., … de Brevern, A. G. (2015). Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2, 20. doi:10.3389/fmolb.2015.00020
  • Duan, Y., & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282(5389), 740–744. doi:10.1126/science.282.5389.740
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. doi:10.1002/jcc.10349
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71doi:10.1186/1741-7007-9-71
  • Gao, M., Zhou, H., & Skolnick, J. (2015). Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure, 23(7), 1362–1369. doi:10.1016/j.str.2015.03.028
  • Grunberg, R., Nilges, M., & Leckner, J. (2006). Flexibility and conformational entropy in protein-protein binding. Structure, 14(4), 683–693. doi:10.1016/j.str.2006.01.014
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hundal, R., & Shaffer, E. A. (2014). Gallbladder cancer: Epidemiology and outcome. Clinical Epidemiology, 6, 99–109. doi:10.2147/CLEP.S37357
  • Joerger, A. C., & Fersht, A. R. (2016). The p53 pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annual Review of Biochemistry, 85(1), 375–404. doi:10.1146/annurev-biochem-060815-014710
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Kumar, R., Maurya, R., & Saran, S. (2017). Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): Insights from molecular dynamics. Molecular Biosystems, 13(3), 510–524. doi:10.1039/C6MB00850J
  • Kumar, R., Maurya, R., & Saran, S. (2019). Introducing a simple model system for binding studies of known and novel inhibitors of AMPK: A therapeutic target for prostate cancer. Journal of Biomolecular Structure and Dynamics, 37(3), 781–795. doi:10.1080/07391102.2018.1441069
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. doi:10.1107/S0021889892009944
  • Li, M., Zhang, Z., Li, X., Ye, J., Wu, X., Tan, Z., Liu, C., Shen, B., Wang, X.-A., Wu, W., Zhou, D., Zhang, D., Wang, T., Liu, B., Qu, K., Ding, Q., Weng, H., Ding, Q., Mu, J., … Liu, Y. (2014). Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nature Genetics, 46(8), 872–876. doi:10.1038/ng.3030
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83. doi:10.1038/356083a0
  • Mehrotra, R., Tulsyan, S., Hussain, S., Mittal, B., Singh Saluja, S., Singh, S., Tanwar, P., Khan, A., Javle, M., Hassan, M. M., Pant, S., De Aretxabala, X., Sirohi, B., Rajaraman, P., Kaur, T., & Rath, G. K. (2018). Genetic landscape of gallbladder cancer: Global overview. Mutation Research/Reviews in Mutation Research, 778, 61–71. doi:10.1016/j.mrrev.2018.08.003
  • Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11(5), 863–874. doi:10.1101/gr.176601
  • Pal, D., & Eisenberg, D. (2005). Inference of protein function from protein structure. Structure, 13(1), 121–130. doi:10.1016/j.str.2004.10.015
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort M., Cooper D. N., Sebat J., Iakoucheva L. M., Mooney, S. D., Radivojac P. (2017). MutPred2: Inferring the molecular and phenotypic impact of amino acid variants. BioRxiv, 134981.
  • Pikkemaat, M. G., Linssen, A. B., Berendsen, H. J., & Janssen, D. B. (2002). Molecular dynamics simulations as a tool for improving protein stability. Protein Engineering, Design and Selection, 15(3), 185–192. doi:10.1093/protein/15.3.185
  • Qin, B., Lam, S. S., & Lin, K. (1999). Crystal structure of a transcriptionally active Smad4 fragment. Structure, 7(12), 1493–1503. doi:10.1016/S0969-2126(00)88340-9
  • Reed, K. K., & Wickham, R. (2009, February). Review of the gastrointestinal tract: From macro to micro. Seminars in Oncology Nursing, 25(1), 3–14. doi:10.1016/j.soncn.2008.10.002
  • Sali, A. (1995). Modeling mutations and homologous proteins. Current Opinion in Biotechnology, 6(4), 437–451. doi:10.1016/0958-1669(95)80074-3
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. doi:10.1006/jmbi.1993.1626
  • Sicklick, J. K., Fanta, P. T., Shimabukuro, K., & Kurzrock, R. (2016). Genomics of gallbladder cancer: The case for biomarker-driven clinical trial design. Cancer and Metastasis Reviews, 35(2), 263–275. doi:10.1007/s10555-016-9602-8
  • Smith, I. N., Thacker, S., Jaini, R., & Eng, C. (2019). Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. Journal of Biomolecular Structure and Dynamics, 37(7), 1766–1782. doi:10.1080/07391102.2018.1465854
  • Stepanova, M. (2007). Dynamics of essential collective motions in proteins: Theory. Physical Review E, 76(5), 051918. doi:10.1103/PhysRevE.76.051918
  • Stone, E. A., & Sidow, A. (2005). Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genome Research, 15(7), 978–986. doi:10.1101/gr.3804205
  • Sun, H., & Yu, G. (2019). New insights into the pathogenicity of non-synonymous variants through multi-level analysis. Scientific Reports, 9(1), 1667. doi:10.1038/s41598-018-38189-9
  • Suwinski, P., Ong, C., Ling, M. H., Poh, Y. M., Khan, A. M., & Ong, H. S. (2019). Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Frontiers in Genetics, 10, 49. doi:10.3389/fgene.2019.00049
  • Tastan, O., Klein-Seetharaman, J., & Meirovitch, H. (2009). The effect of loops on the structural organization of α-helical membrane proteins. Biophysical Journal, 96(6), 2299–2312. doi:10.1016/j.bpj.2008.12.3894
  • Thusberg, J., & Vihinen, M. (2009). Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Human Mutation, 30(5), 703–714. doi:10.1002/humu.20938
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. doi:10.1186/1471-2105-11-548
  • Wardell, C. P., Fujita, M., Yamada, T., Simbolo, M., Fassan, M., Karlic, R., Polak, P., Kim, J., Hatanaka, Y., Maejima, K., Lawlor, R. T., Nakanishi, Y., Mitsuhashi, T., Fujimoto, A., Furuta, M., Ruzzenente, A., Conci, S., Oosawa, A., Sasaki-Oku, A., … Nakagawa, H. (2018). Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. Journal of Hepatology, 68(5), 959–969. doi:10.1016/j.jhep.2018.01.009
  • Weinberg, B. A., Xiu, J., Lindberg, M. R., Shields, A. F., Hwang, J. J., Poorman, K., Salem M. E., Pishvaian M. J., Holcombe R. F., Marshall J. L., Morse, M. A. (2018). Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. Journal of Gastrointestinal Oncology, 10(4), 652–662. doi:10.21037/jgo.2018.08.18
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. doi:10.1093/nar/gkm290
  • Wu, J. N., & Roberts, C. W. (2013). ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discovery, 3(1), 35–43. doi:10.1158/2159-8290.CD-12-0361
  • Xu, D., Zhang, J., Roy, A., & Zhang, Y. (2011). Automated protein structure modeling in CASP9 by I‐TASSER pipeline combined with QUARK‐based ab initio folding and FG‐MD‐based structure refinement. Proteins: Structure, Function, and Bioinformatics, 79(S10), 147–160. doi:10.1002/prot.23111
  • Yadav, S., De Sarkar, N., Kumari, N., Krishnani, N., Kumar, A., & Mittal, B. (2017). Targeted gene sequencing of gallbladder carcinoma identifies high-impact somatic and rare germline mutations. Cancer Genomics & Proteomics, 14(6), 495–506. doi:10.21873/cgp.20059
  • Zehir, A., Benayed, R., Shah, R. H., Syed, A., Middha, S., Kim, H. R., Srinivasan, P., Gao, J., Chakravarty, D., Devlin, S. M., Hellmann, M. D., Barron, D. A., Schram, A. M., Hameed, M., Dogan, S., Ross, D. S., Hechtman, J. F., DeLair, D. F., Yao, J., … Berger, M. F. (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 23(6), 703–713.
  • Zhang, J., Qiu, W., Liu, H., Qian, C., Liu, D., Wang, H., Hu, N., Tang, Y. T., Sun, J., & Shen, Z. (2018). Genomic alterations in gastric cancers discovered via whole-exome sequencing. BMC Cancer, 18(1), 1270. doi:10.1186/s12885-018-5097-8
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. doi:10.1186/1471-2105-9-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.