179
Views
24
CrossRef citations to date
0
Altmetric
Research Articles

The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study

ORCID Icon
Pages 1955-1964 | Received 04 Feb 2020, Accepted 04 Mar 2020, Published online: 20 Mar 2020

References

  • Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 90(17), 7915–7922. doi:10.1073/pnas.90.17.7915
  • Amić, A., Marković, Z., Klein, E., Dimitrić Marković, J. M., & Milenković, D. (2018). Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chemistry, 246, 481–489. doi:10.1016/j.foodchem.2017.11.100
  • Aruoma, O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists' Society, 75(2), 199–212. doi:10.1007/s11746-998-0032-9
  • Bartmess, J. E. (1994). Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98(25), 6420–6424. doi:10.1021/j100076a029
  • Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405–412. doi:10.2337/diab.40.4.405
  • Bizarro Magda, M., Cabral, B. J. C., dos Santos, R. M. B., & Simões, J. A. M. (1999). Substituent effects on the O–H bond dissociation enthalpies in phenolic compounds: Agreements and controversies + erratum. Pure and Applied Chemistry, 71(7), 1249. doi:10.1351/pac199971071249
  • Boulebd, H., Lahneche, Y. D., Khodja, I. A., Benslimane, M., & Belfaitah, A. (2019). New Schiff bases derived from benzimidazole as efficient mercury-complexing agents in aqueous medium. Journal of Molecular Structure, 1196, 58–65. doi:10.1016/j.molstruc.2019.06.060
  • Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity index. Chemical Reviews, 106(6), 2065–2091. doi:10.1021/cr040109f
  • Cheng, Z.-J., Lin, C.-N., Hwang, T.-L., & Teng, C.-M. (2001). Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochemical Pharmacology, 61(8), 939–946. doi:10.1016/S0006-2952(01)00543-3
  • De Abreu, H. A., Aparecida dos S. Lago, I., Souza, G. P., Piló-Veloso, D., Duarte, H. A., & de C. Alcântara, A. F. (2008). Antioxidant activity of (+)-bergenin—a phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae). Organic & Biomolecular Chemistry, 6(15), 2713–2718. doi:10.1039/b804385j
  • Dhalla, N. S., Temsah, R. M., & Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 18(6), 655–673. doi:10.1097/00004872-200018060-00002
  • Estévez, L., Otero, N., & Mosquera, R. A. (2010). A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins. The Journal of Physical Chemistry B, 114(29), 9706–9712. doi:10.1021/jp1041266
  • Fernández-Sánchez, A., Madrigal-Santillán, E., Bautista, M., Esquivel-Soto, J., Morales-González, Á., Esquivel-Chirino, C., Durante-Montiel, I., Sánchez-Rivera, G., Valadez-Vega, C., & Morales-González, J. A. (2011). Inflammation, oxidative stress, and obesity. International Journal of Molecular Sciences, 12(5), 3117–3132. doi:10.3390/ijms12053117
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … & Fox, D. J. (2009). Gaussian 09, Revision E.01. In. Wallingford, CT.
  • Galano, A., & Alvarez-Idaboy, J. R. (2014). Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods. Journal of Computational Chemistry, 35(28), 2019–2026. doi:10.1002/jcc.23715
  • Galano, A., & Alvarez-Idaboy, J. R. (2019). Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow? International Journal of Quantum Chemistry, 119(2), e25665. doi:10.1002/qua.25665
  • Giacomelli, C., Miranda, F. d S., Gonçalves, N. S., & Spinelli, A. (2004). Antioxidant activity of phenolic and related compounds: A density functional theory study on the O–H bond dissociation enthalpy. Redox Report, 9(5), 263–269. doi:10.1179/135100004225006038
  • Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33–50. doi:10.1146/annurev.nu.16.070196.000341
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. Oxford University Press.
  • Halliwell, B., Gutteridge, J. M. C., & Cross, C. E. (1992). Free radicals, antioxidants, and human disease: Where are we now? The Journal of Laboratory and Clinical Medicine, 119(6), 598–620.
  • Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American Chemical Society, 77(2), 334–338. doi:10.1021/ja01607a027
  • Hassanzadeh, K., Akhtari, K., Hassanzadeh, H., Zarei, S. A., Fakhraei, N., & Hassanzadeh, K. (2014). The role of structural CH compared with phenolic OH sites on the antioxidant activity of oleuropein and its derivatives as a great non-flavonoid family of the olive components: A DFT study. Food Chemistry, 164, 251–258. doi:10.1016/j.foodchem.2014.05.015
  • Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., & Duroux, J.-L. (2007). Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. The Journal of Physical Chemistry A, 111(6), 1138–1145. 10.1021/jp066496+
  • Leopoldini, M., Marino, T., Russo, N., & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916–4922. doi:10.1021/jp037247d
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. doi:10.2147/CIA.S158513
  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B, 113(18), 6378–6396. doi:10.1021/jp810292n
  • Ngo, T. C., Dao, D. Q., Thong, N. M., & Nam, P. C. (2016). Insight into the antioxidant properties of non-phenolic terpenoids contained in essential oils extracted from the buds of Cleistocalyx operculatus: A DFT study. RSC Advances, 6(37), 30824–30834. doi:10.1039/C6RA02683D
  • Parker, V. D. (1992). Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H+/H.bul.) couple. Journal of the American Chemical Society, 114(19), 7458–7462. doi:10.1021/ja00045a018
  • Parr, R. G., Szentpály, L. v., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. doi:10.1021/ja983494x
  • Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83(22), 8440–8441. doi:10.1073/pnas.83.22.8440
  • Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614697/
  • Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. doi:10.1016/j.ejmech.2015.04.040
  • Praveena, R., Sadasivam, K., Deepha, V., & Sivakumar, R. (2014). Antioxidant potential of orientin: A combined experimental and DFT approach. Journal of Molecular Structure, 1061, 114–123. doi:10.1016/j.molstruc.2014.01.002
  • Rajan, V. K., & Muraleedharan, K. (2017). A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, gallic acid. Food Chemistry, 220, 93–99. doi:10.1016/j.foodchem.2016.09.178
  • Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M. (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem, 952(1–3), 25–30. doi:10.1016/j.theochem.2010.04.002
  • Sadasivam, K., & Kumaresan, R. (2011). Antioxidant behavior of mearnsetin and myricetin flavonoid compounds — A DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(1), 282–293. doi:10.1016/j.saa.2011.02.042
  • Sahu, N. K., Balbhadra, S. S., Choudhary, J., & Kohli, D. V. (2012). Exploring pharmacological significance of chalcone scaffold: A review. Current Medicinal Chemistry, 19(2), 209–225. doi:10.2174/092986712803414132
  • Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462. doi:10.1016/j.cub.2014.03.034
  • Shang, Y., Zhou, H., Li, X., Zhou, J., & Chen, K. (2019). Theoretical studies on the antioxidant activity of viniferifuran. New Journal of Chemistry, 43(39), 15736–15742. doi:10.1039/C9NJ02735A
  • Shao, C., Roberts, K. N., Markesbery, W. R., Scheff, S. W., & Lovell, M. A. (2006). Oxidative stress in head trauma in aging. Free Radical Biology & Medicine, 41(1), 77–85. doi:10.1016/j.freeradbiomed.2006.03.007
  • Sies, H. (1991). Oxidative stress: From basic research to clinical application. The American Journal of Medicine, 91(3), S31–S38. doi:10.1016/0002-9343(91)90281-2
  • Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86, 715–748. doi:10.1146/annurev-biochem-061516-045037
  • Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 24(8), 1583. doi:10.3390/molecules24081583
  • Sosa, V., Moliné, T., Somoza, R., Paciucci, R., Kondoh, H., & Lleonart, M. E. (2013). Oxidative stress and cancer: An overview. Ageing Research Reviews, 12(1), 376–390. doi:10.1016/j.arr.2012.10.004
  • Stepanić, V., Gall Trošelj, K., Lučić, B., Marković, Z., & Amić, D. (2013). Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chemistry, 141(2), 1562–1570. doi:10.1016/j.foodchem.2013.03.072
  • Sun, Y.-M., Zhang, H.-Y., Chen, D.-Z., & Liu, C.-B. (2002). Theoretical elucidation on the antioxidant mechanism of curcumin: A DFT study. Organic Letters, 4(17), 2909–2911. doi:10.1021/ol0262789
  • Thong, N. M., Duong, T., Pham, L. T., & Nam, P. C. (2014). Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM (ROB3LYP/6-311++ G (2df, 2p): PM6) method. Chemical Physics Letters, 613, 139–145. doi:10.1016/j.cplett.2014.08.067
  • Thong, N. M., Quang, D. T., Bui, N. H. T., Dao, D. Q., & Nam, P. C. (2015). Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study. Chemical Physics Letters, 625, 30–35. doi:10.1016/j.cplett.2015.02.033
  • Vogel, S., Ohmayer, S., Brunner, G., & Heilmann, J. (2008). Natural and non-natural prenylated chalcones: Synthesis, cytotoxicity and anti-oxidative activity. Bioorganic & Medicinal Chemistry, 16(8), 4286–4293. doi:10.1016/j.bmc.2008.02.079
  • Vo, Q. V., Nam, P. C., Bay, M. V., Thong, N. M., Cuong, N. D., & Mechler, A. (2018). Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Scientific Reports, 8(1), 12361. doi:10.1038/s41598-018-30860-5
  • Vo, Q. V., Nam, P. C., Thong, N. M., Trung, N. T., Phan, C.-T D., & Mechler, A. (2019). Antioxidant Motifs in Flavonoids: O–H versus C–H Bond Dissociation. ACS Omega., 4(5), 8935–8942. doi:10.1021/acsomega.9b00677
  • Vo, Q. V., Van Bay, M., Nam, P. C., & Mechler, A. (2019). Is indolinonic hydroxylamine a promising artificial antioxidant? The Journal of Physical Chemistry B, 123(37), 7777–7784. doi:10.1021/acs.jpcb.9b05160
  • Wang, G., Liu, Y., Zhang, L., An, L., Chen, R., Liu, Y., Luo, Q., Li, Y., Wang, H., & Xue, Y. (2020). Computational study on the antioxidant property of coumarin-fused coumarins. Food Chemistry, 304, 125446. doi:10.1016/j.foodchem.2019.125446
  • Wang, G., Xue, Y., An, L., Zheng, Y., Dou, Y., Zhang, L., & Liu, Y. (2015). Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chemistry, 171, 89–97. doi:10.1016/j.foodchem.2014.08.106
  • Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. doi:10.1021/ja002455u
  • Xiao, G., Li, G., Chen, L., Zhang, Z., Yin, J.-J., Wu, T., Cheng, Z., Wei, X., & Wang, Z. (2010). Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. Journal of Chromatography A, 1217(34), 5470–5476. doi:10.1016/j.chroma.2010.06.041
  • Xue, Y., Zheng, Y., An, L., Dou, Y., & Liu, Y. (2014). Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins. Food Chemistry, 151, 198–206. doi:10.1016/j.foodchem.2013.11.064
  • Xue, Y., Zheng, Y., An, L., Zhang, L., Qian, Y., Yu, D., Gong, X., & Liu, Y. (2012). A theoretical study of the structure–radical scavenging activity of hydroxychalcones. Computational and Theoretical Chemistry, 982, 74–83. doi:10.1016/j.comptc.2011.12.020
  • Xue, Y., Zheng, Y., Zhang, L., Wu, W., Yu, D., & Liu, Y. (2013). Theoretical study on the antioxidant properties of 2′-hydroxychalcones: H-atom vs. electron transfer mechanism. Journal of Molecular Modeling, 19(9), 3851–3862. doi:10.1007/s00894-013-1921-x
  • Zhao, Y., & Truhlar, D. G. (2008a). How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? The Journal of Physical Chemistry A, 112(6), 1095–1099. doi:10.1021/jp7109127
  • Zhao, Y., & Truhlar, D. G. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1), 215–241. doi:10.1007/s00214-007-0310-x
  • Zheng, Y.-Z., Deng, G., Guo, R., Fu, Z.-M., & Chen, D.-F. (2019). Theoretical insight into the antioxidative activity of isoflavonoid: The effect of the C2 = C3 double bond. Phytochemistry, 166, 112075. doi:10.1016/j.phytochem.2019.112075
  • Zheng, Y.-Z., Deng, G., Liang, Q., Chen, D.-F., Guo, R., & Lai, R.-C. (2017). Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Scientific Reports, 7(1), 7543. doi:10.1038/s41598-017-08024-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.