367
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2199-2209 | Received 20 Jan 2020, Accepted 16 Mar 2020, Published online: 07 Apr 2020

References

  • Adams, T. E., & Huntington, J. A. (2016). Structural transitions during prothrombin activation: On the importance of fragment 2. Biochimie, 122, 235–242. doi:10.1016/j.biochi.2015.09.013
  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36(4), 419–424. doi:10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO;2-U
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. doi:10.1002/prot.340170408
  • Autiero, I., Ruvo, M., Improta, R., & Vitagliano, L. (2018). The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochimica Et Biophysica Acta, 1862(4), 1006–1016. doi:10.1016/j.bbagen.2018.01.014
  • Billur, R., Sabo, T. M., & Maurer, M. C. (2019). Thrombin exosite maturation and ligand binding at ABE II help stabilize PAR-binding competent conformation at ABE I. Biochemistry, 58(8), 1048–1060. doi:10.1021/acs.biochem.8b00943
  • Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355(6360), 564–566. doi:10.1038/355564a0
  • Bock, P. E., Panizzi, P., & Verhamme, I. M. A. (2007). Exosites in the substrate specificity of blood coagulation reactions. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 81–94. doi:10.1111/j.1538-7836.2007.02496.x
  • Bode, W., Turk, D., & Karshikov, A. (1992). The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Science, 1(4), 426–471. doi:10.1002/pro.5560010402
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. doi:10.1063/1.2408420
  • Chen, K., Stafford, A. R., Wu, C., Yeh, C. H., Kim, P. Y., Fredenburgh, J. C., & Weitz, J. I. (2017). Exosite 2-directed ligands attenuate protein C activation by the thrombin-thrombomodulin complex. Biochemistry, 56(24), 3119–3128. doi:10.1021/acs.biochem.7b00250
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • de Amorim, H. L. N., Netz, P. A., & Guimarães, J. A. (2010). Thrombin allosteric modulation revisited: A molecular dynamics study. Journal of Molecular Modeling, 16(4), 725–735. doi:10.1007/s00894-009-0590-2
  • Di Cera, E. (2008). Thrombin. Molecular Aspects of Medicine, 29(4), 203–254. doi:10.1016/j.mam.2008.01.001
  • Di Cera, E. (2011). Thrombin as an anticoagulant. Progress in Molecular Biology and Translational Science, 99, 145–184. 10.1016/B978-0-12-385504-6.00004-X
  • Famulok, M., Hartig, J. S., & Mayer, G. (2007). Functional aptamers and aptazymes in biotechnology. Chemical Reviews, 107(9), 3715–3743. doi:10.1021/cr0306743
  • Feng, X., Yu, C., Feng, F., Lu, P., Chai, Y., Li, Q., Zhang, D., Wang, X., & Yao, L. (2019). Direct measurement of through-bond effects in molecular multivalent interactions. Chemistry - A European Journal, 25(12), 2978–2982. doi:10.1002/chem.201805218
  • Fredenburgh, J. C., Stafford, A. R., & Weitz, J. I. (1997). Evidence for allosteric linkage between exosites 1 and 2 of thrombin. Journal of Biological Chemistry, 272(41), 25493–25499. doi:10.1074/jbc.272.41.25493
  • Fuglestad, B., Gasper, P. M., Tonelli, M., McCammon, J. A., Markwick, P. R. L., & Komives, E. A. (2012). The dynamic structure of thrombin in solution. Biophysical Journal, 103(1), 79–88. doi:10.1016/j.bpj.2012.05.047
  • Gandhi, P. S., Chen, Z., Mathews, F. S., & Di Cera, E. (2008). Structural identification of the pathway of long-range communication in an allosteric enzyme. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1832–1837. doi:10.1073/pnas.0710894105
  • Ge, L., Jin, G., & Fang, X. (2012). Investigation of the interaction between a bivalent aptamer and thrombin by AFM. Langmuir, 28(1), 707–713. doi:10.1021/la203954x
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. doi:10.1093/bioinformatics/btl461
  • Guillin, M. C., Bezeaud, A., Bouton, M. C., & Jandrot-Perrus, M. (1995). Thrombin specificity. Thrombosis and Haemostasis, 74(01), 129–133. doi:10.1055/s-0038-1642665
  • Handley, L. D., Fuglestad, B., Stearns, K., Tonelli, M., Fenwick, R. B., Markwick, P. R. L., & Komives, E. A. (2017). NMR reveals a dynamic allosteric pathway in thrombin. Scientific Reports, 7. doi:10.1038/srep39575. Article ID 39575
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. doi:10.1016/0263-7855(96)00018-5
  • Jiao, F., Fan, H., Yang, G., Zhang, F., & He, P. (2013). Directly investigating the interaction between aptamers and thrombin by atomic force microscopy. Journal of Molecular Recognition, 26(12), 672–678. doi:10.1002/jmr.2312
  • Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nature Reviews Drug Discovery, 9(7), 537–550. doi:10.1038/nrd3141
  • Kim, Y., Cao, Z., & Tan, W. (2008). Molecular assembly for high-performance bivalent nucleic acid inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5664–5669. doi:10.1073/pnas.0711803105
  • Koeppe, J. R., & Komives, E. A. (2006). Amide H/2H exchange reveals a mechanism of thrombin activation. Biochemistry, 45(25), 7724–7732. doi:10.1021/bi060405h
  • Koeppe, J. R., Seitova, A., Mather, T., & Komives, E. A. (2005). Thrombomodulin tightens the thrombin active site loops to promote protein C activation. Biochemistry, 44(45), 14784–14791. doi:10.1021/bi0510577
  • Krishnaswamy, S. (2005). Exosite-driven substrate specificity and function in coagulation. Journal of Thrombosis and Haemostasis, 3(1), 54–67. doi:10.1111/j.1538-7836.2004.01021.x
  • Malovichko, M. V., Sabo, T. M., & Maurer, M. C. (2013). Ligand binding to anion-binding exosites regulates conformational properties of thrombin. Journal of Biological Chemistry, 288(12), 8667–8678. doi:10.1074/jbc.M112.410829
  • Markwick, P. R. L., Peacock, R. B., & Komives, E. A. (2019). Accurate prediction of amide exchange in the fast limit reveals thrombin allostery. Biophysical Journal, 116(1), 49–56. doi:10.1016/j.bpj.2018.11.023
  • Mehta, A. Y., Thakkar, J. N., Mohammed, B. M., Martin, E. J., Brophy, D. F., Kishimoto, T., & Desai, U. R. (2014). Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. Journal of Medicinal Chemistry, 57(7), 3030–3039. doi:10.1021/jm4020026
  • Müller, J., Wulffen, B., Pötzsch, B., & Mayer, G. (2007). Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. ChemBioChem, 8(18), 2223–2226. doi:10.1002/cbic.200700535
  • Narayanan, S. (1999). Multifunctional roles of thrombin. Annals of Clinical and Laboratory Science, 29(4), 275–280.
  • Ng, N. M.-Y., Quinsey, N. S., Matthews, A. Y., Kaiserman, D., Wijeyewickrema, L. C., Bird, P. I., Thompson, P. E., & Pike, R. N. (2009). The effects of exosite occupancy on the substrate specificity of thrombin. Archives of Biochemistry and Biophysics, 489(1-2), 48–54. doi:10.1016/j.abb.2009.07.012
  • Nimjee, S. M., Oney, S., Volovyk, Z., Bompiani, K. M., Long, S. B., Hoffman, M., & Sullenger, B. A. (2009). Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin. RNA, 15(12), 2105–2111. doi:10.1261/rna.1240109
  • Olmsted, I. R., Xiao, Y., Cho, M., Csordas, A. T., Sheehan, J. H., Meiler, J., Soh, H. T., & Bornhop, D. J. (2011). Measurement of aptamer-protein interactions with back-scattering interferometry. Analytical Chemistry, 83(23), 8867–8870. doi:10.1021/ac202823m
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. doi:10.1063/1.328693
  • Pelc, L. A., Chen, Z., Gohara, D. W., Vogt, A. D., Pozzi, N., & Di Cera, E. (2015). Why Ser and not Thr brokers catalysis in the trypsin fold. Biochemistry, 54(7), 1457–1464. doi:10.1021/acs.biochem.5b00014
  • Petrera, N. S., Stafford, A. R., Leslie, B. A., Kretz, C. A., Fredenburgh, J. C., & Weitz, J. I. (2009). Long range communication between exosites 1 and 2 modulates thrombin function. Journal of Biological Chemistry, 284(38), 25620–25629. doi:10.1074/jbc.M109.000042
  • Pica, A., Russo Krauss, I., Merlino, A., Nagatoishi, S., Sugimoto, N., & Sica, F. (2013). Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. FEBS Journal, 280(24), 6581–6588. doi:10.1111/febs.12561
  • Pica, A., Russo Krauss, I., Parente, V., Tateishi-Karimata, H., Nagatoishi, S., Tsumoto, K., Sugimoto, N., & Sica, F. (2017). Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Research, 45(1), 461–469. doi:10.1093/nar/gkw1113
  • Rezaie, A. R., & Yang, L. (2003). Thrombomodulin allosterically modulates the activity of the anticoagulant thrombin. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12051–12056. doi:10.1073/pnas.2135346100
  • Roxo, C., Kotkowiak, W., & Pasternak, A. (2019). G-quadruplex-forming aptamers—characteristics, applications, and perspectives. Molecules, 24(20), 3781. doi:10.3390/molecules24203781
  • Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., & Sica, F. (2011). Thrombin-aptamer recognition: A revealed ambiguity. Nucleic Acids Research, 39(17), 7858–7867. doi:10.1093/nar/gkr522
  • Russo Krauss, I., Merlino, A., Randazzo, A., Mazzarella, L., & Sica, F. (2010). Crystallization and preliminary X-ray analysis of the complex of human alpha-thrombin with a modified thrombin-binding aptamer. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 66(8), 961–963. doi:10.1107/S1744309110024632
  • Russo Krauss, I., Merlino, A., Randazzo, A., Novellino, E., Mazzarella, L., & Sica, F. (2012). High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Research, 40(16), 8119–8128. doi:10.1093/nar/gks512
  • Russo Krauss, I., Napolitano, V., Petraccone, L., Troisi, R., Spiridonova, V., Mattia, C. A., & Sica, F. (2018). Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers. International Journal of Biological Macromolecules, 107(Pt B), 1697–1705. doi:10.1016/j.ijbiomac.2017.10.033
  • Russo Krauss, I., Pica, A., Merlino, A., Mazzarella, L., & Sica, F. (2013). Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. Acta Crystallographica Section D Biological Crystallography, 69(12), 2403–2411. doi:10.1107/S0907444913022269
  • Russo Krauss, I., Spiridonova, V., Pica, A., Napolitano, V., & Sica, F. (2016). Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Research, 44(2), 983–991. doi:10.1093/nar/gkv1384
  • Sabo, T. M., & Maurer, M. C. (2009). Biophysical investigation of GpIbalpha binding to thrombin anion binding exosite II. Biochemistry, 48(30), 7110–7122. doi:10.1021/bi900745b
  • Sabo, T. M., Farrell, D. H., & Maurer, M. C. (2006). Conformational analysis of gamma’ peptide (410-427) interactions with thrombin anion binding exosite II. Biochemistry, 45(24), 7434–7445. doi:10.1021/bi060360k
  • Spiridonova, V. A., Barinova, K. V., Glinkina, K. A., Melnichuk, A. V., Gainutdynov, A. A., Safenkova, I. V., & Dzantiev, B. B. (2015). A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin. FEBS Letters, 589(16), 2043–2049. doi:10.1016/j.febslet.2015.06.020
  • Stone, S. R., & Hofsteenge, J. (1987). Effect of heparin on the interaction between thrombin and hirudin. European Journal of Biochemistry, 169(2), 373–376. doi:10.1111/j.1432-1033.1987.tb13622.x
  • Tan, X., Dey, S. K., Telmer, C., Zhang, X., Armitage, B. A., & Bruchez, M. P. (2014). Aptamers act as activators for the thrombin mediated-hydrolysis of peptide substrates. ChemBioChem, 15(2), 205–208. doi:10.1002/cbic.201300693
  • Tasset, D. M., Kubik, M. F., & Steiner, W. (1997). Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 272(5), 688–698. doi:10.1006/jmbi.1997.1275
  • Troisi, R., Napolitano, V., Spiridonova, V., Russo Krauss, I., & Sica, F. (2018). Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Research, 46(22), 12177–12185. doi:10.1093/nar/gky990
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. doi:10.1002/jcc.20291
  • Verhamme, I. M., Olson, S. T., Tollefsen, D. M., & Bock, P. E. (2002). Binding of exosite ligands to human thrombin. Re-evaluation of allosteric linkage between thrombin exosites I and II. Journal of Biological Chemistry, 277(9), 6788–6798. doi:10.1074/jbc.M110257200
  • Xiao, J., & Salsbury, F. R. (2017). Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. Journal of Biomolecular Structure and Dynamics, 35(15), 3354–3369. doi:10.1080/07391102.2016.1254682
  • Xiao, J., & Salsbury, F. R. (2019). Na+-binding modes involved in thrombin’s allosteric response as revealed by molecular dynamics simulations, correlation networks and Markov modeling. Physical Chemistry Chemical Physics, 21(8), 4320–4330. doi:10.1039/C8CP07293K
  • Xiao, J., Melvin, R. L., & Salsbury, F. R. (2017). Mechanistic insights into thrombin’s switch between “slow” and “fast” forms. Physical Chemistry Chemical Physics, 19(36), 24522–24533. doi:10.1039/C7CP03671J
  • Xiao, J., Melvin, R. L., & Salsbury, F. R. (2019). Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. Journal of Biomolecular Structure and Dynamics, 37(4), 982–999. doi:10.1080/07391102.2018.1445032
  • Yang, L., Manithody, C., Walston, T. D., Cooper, S. T., & Rezaie, A. R. (2003). Thrombomodulin enhances the reactivity of thrombin with protein C inhibitor by providing both a binding site for the serpin and allosterically modulating the activity of thrombin. Journal of Biological Chemistry, 278(39), 37465–37470. doi:10.1074/jbc.M307243200
  • Zavyalova, E., Golovin, A., Timoshenko, T., Babiy, A., Pavlova, G., & Kopylov, A. (2012). DNA aptamers for human thrombin with high anticoagulant activity demonstrate target- and species-specificity. Current Medicinal Chemistry, 19(30), 5232–5237. doi:10.2174/092986712803530575
  • Zhou, J., & Rossi, J. (2017). Aptamers as targeted therapeutics: Current potential and challenges. Nature Reviews Drug Discovery, 16(3), 181–202. doi:10.1038/nrd.2016.199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.