199
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Bioconjugation of gold nanoparticles with aminoguanidine as a potential inhibitor of non-enzymatic glycation reaction

, , , , &
Pages 2014-2020 | Received 31 Jan 2020, Accepted 06 Mar 2020, Published online: 09 Apr 2020

References

  • Ahmad, M. I., & Ahmad, S. (2011). Preferential recognition of methylglyoxal-modified calf thymus DNA by circulating antibodies in cancer patients. Indian Journal of Biochemistry & Biophysics, 48(4), 290–296.
  • Ahmad, S., Akhter, F., Shahab, U., & Khan, M. S. (2013). Studies on glycation of human low density lipoprotein: A functional insight into physico-chemical analysis. International Journal of Biological Macromolecules, 62, 167–171. doi:10.1016/j.ijbiomac.2013.08.037
  • Ahmad, S., Khan, M. S., Akhter, F., Khan, M. S., Khan, A., Ashraf, J. M., Pandey, R. P., & Shahab, U. (2014). Glycoxidation of biological macromolecules: A critical approach to halt the menace of glycation. Glycobiology, 24(11), 979–990. doi:10.1093/glycob/cwu057
  • Ahmad, S., Dixit, K., Shahab, U., Alam, K., & Ali, A. (2011). Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochemical and Biophysical Research Communications, 407, 568–574. doi:10.1016/j.bbrc.2011.03.064
  • Ahmad, S., Shahab, U., Baig, M. H., Khan, M. S., Khan, M. S., Srivastava, A. K., & Saeed, M. (2013). Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products. PloS One, 8(9), e72128. doi:10.1371/journal.pone.0072128
  • Ashraf, J. M., Ahmad, S., Rabbani, G., Jan, A. T., Lee, E. J., Khan, R. H., & Choi, I. (2014). Physicochemical analysis of structural alteration and AGEs generation during glycation of H2A histone by 3-Deoxyglucosone. IUBMB Life, 66(10), 686–693. doi:10.1002/iub.1318
  • Banerjee, S. (2019). Methylglyoxal modification reduces the sensitivity of hen egg white lysozyme to stress-induced aggregation: Insight into the anti-amyloidogenic property of α-dicarbonyl compound. Journal of Biomolecular Structure and Dynamics, 1–9. doi:10.1080/07391102.2019.1702589
  • Faisal, M., Alatar, A. A., & Ahmad, S. (2017). Immunoglobulin-G glycation by Fructose leads to structural perturbations and drop off in free Lysine and Arginine residues. Protein & Peptide Letters, 24(3), 241–244. doi:10.2174/0929866524666170117142723
  • Hermanson, G. T. (2008). Bioconjugate techniques (2nd ed., pp. 1–1323). Academic Press.
  • Iqbal, D., Khan, M. S., Khan, M. S., Ahmad, S., Hussain, M. S., & Ali, M. (2015). Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait. Lipids in Health and Disease, 14(1), 1–15. doi:10.1186/s12944-015-0013-6
  • Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1), 77–89. doi:10.1007/s11051-008-9446-4
  • Khan, M. S., Tabrez, S., Al-Okail, M. S., Shaik, G. M., Bhat, S. A., Rehman, T. M., Husain, F. M., & AlAjmi, M. F. (2020). Non-enzymatic glycation of protein induces cancer cell proliferation and its inhibition by quercetin: Spectroscopic, cytotoxicity and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–10. doi:10.1080/07391102.2020.1715838
  • Kumar, S. A., Kazemian, M., Gosavi, S. W., Kulkarni, S., Ahmad, A., & Khan, M. I. (2007). Sulphite reductase mediated synthesis of gold nanoparticles capped by phytochelatin. Biotechnology and Applied Biochemistry, 47(4), 191–195. doi:10.1042/BA20060205
  • Lyons, T. J., & Basu, A. (2012). Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers. Translational Research, 159(4), 303–312. doi:10.1016/j.trsl.2012.01.009
  • Marchetti, P. (2009). Advanced glycation end products (AGEs) and their receptors (RAGEs) in diabetic vascular disease. Medicographia, 31, 257–265.
  • Maulucci, G., De Spirito, M., Arcovito, G., Boffi, F., Castellano, A. C., & Briganti, G. (2005). Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophysical Journal, 88(5), 3545–3550. doi:10.1529/biophysj.104.048876
  • Mustafa, I., Ahmad, S., Dixit, K., Ahmad, J., & Ali, A. (2012). Glycated human DNA is a preferred antigen for anti-DNA antibodies in diabetic patients. Diabetes Research and Clinical Practice, 95, 98–104. doi:10.1016/j.diabres.2011.09.018
  • Rondeau, P., & Bourdon, E. (2011). The glycation of albumin: Structural and functional impacts. Biochimie, 93(4), 645–658. doi:10.1016/j.biochi.2010.12.003
  • Sadowska-Bartosz, I., & Bartosz, G. (2015). Prevention of protein glycation by natural compounds. Molecules, 20(2), 3309–3334. doi:10.3390/molecules20023309
  • Śliwińska-Hill, U., & Wiglusz, K. (2019). Multispectroscopic studies of the interaction of folic acid with glycated human serum albumin. Journal of Biomolecular Structure and Dynamics, 37(14), 3731–3739. doi:10.1080/07391102.2018.1526713
  • Selvin, E., Steffes, M. W., Zhu, H., Matsushita, K., Wagenknecht, L., Pankow, J., Coresh, J., & Brancati, F. L. (2010). Glycated hemoglobin diabetes and cardiovascular risk in non-diabetic adult. New England Journal of Medicine, 362(9), 800–810. doi:10.1056/NEJMoa0908359
  • Singha, S., Bhattacharya, J., Datta, H., & Dasgupta, A. K. (2009). Anti-glycation activity of gold nanoparticles. Nanomedicine: NBM, 5(1), 21–29. doi:10.1016/j.nano.2008.06.005
  • Suji, G., & Sivakami, S. (2006). DNA damage by free radical production by aminoguanidine. Annals of the New York Academy of Sciences, 1067(1), 191–199. doi:10.1196/annals.1354.023
  • Xi, M., Hai, C., Tang, H., Chen, M., Fang, K., & Liang, X. (2008). Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytotherapy Research, 22(2), 228–237. doi:10.1002/ptr.2297
  • Zhang, Q., Tang, N., Schepmoes, A. A., Phillips, L. S., Smith, R. D., & Metz, T. O. (2008). Proteomic profiling of non-enzymatically glycated proteins in human plasma and erythrocyte membranes. Journal of Proteome Research, 7(5), 2025–2032. doi:10.1021/pr700763r
  • Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43(17), 4249–4257. doi:10.1016/j.watres.2009.06.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.