226
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation

&
Pages 3533-3547 | Received 02 Mar 2020, Accepted 04 May 2020, Published online: 22 May 2020

References

  • Basu, A., & Kumar, G. S. (2014). Interaction of the dietary pigment curcumin with hemoglobin: Energetics of the complexation. Food & Function, 5(8), 1949–1955. https://doi.org/10.1039/c4fo00295d
  • Beigoli, S., Sharifi Rad, A., Askari, A., Assaran Darban, R., & Chamani, J. (2019). Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. Journal of Biomolecular Structure & Dynamics, 37(9), 2265–2282. https://doi.org/10.1080/07391102.2018.1491421
  • Benz Jr., E. J., & Ebert, B. L. (2018). Hemoglobin variants associated with hemolytic anemia, altered oxygen affinity, and methemoglobinemias. Hematology, 43, 608–615.
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhomia, R., Trivedi, V., Coleman, N. J., & Mitchell, J. C. (2016). Investigation of the thermal and storage stability of bovine haemoglobin by ultra violet-visible and circular dichroism spectroscopies. Journal of Pharmaceutical Analysis, 6(4), 242–248. https://doi.org/10.1016/j.jpha.2016.02.004
  • Bhuiya, S., Chowdhury, S., Haque, L., & Das, S. (2019). Elucidation of the association of potential chemotherapeutic alkaloid chelerythrine with bovine hemoglobin by experimental probing and molecular docking simulation. International Journal of Biological Macromolecules, 138, 57–69. https://doi.org/10.1016/j.ijbiomac.2019.07.069
  • Biovia, D. S. (2015). Discovery studio visualizer, Release 4. Dassault Systemes.
  • Bobone, S., Weert, M. V. D., & Stella, L. (2014). A reassessment of synchronous fluorescence in the separation of Trp and Tyr contributions in protein emission and in the determination of conformational changes. Journal of Molecular Structure, 1077, 68–76. https://doi.org/10.1016/j.molstruc.2014.01.004
  • Bond, E. L. (2005). Further identifying free radical contributions to sickle cell disease. In Free radicals in biology and medicine. Springer.
  • Bortolotti, A., Wong, Y. H., Korsholm, S. S., Bahring, N. H. B., Bobone, S., Tayyab, S., van de Weert, M., & Stella, L. (2016). On the purported “backbone fluorescence” in protein three-dimensional fluorescence spectra. RSC Advances, 6(114), 112870–112876.  https://doi.org/10.1039/C6RA23426G
  • Bose, D., Sarkar, D., & Chattopadhyay, N. (2010). Probing the binding interaction of a phenazium dye with serum transport proteins: A combined fluorometric and circular dichroism study. Photochemistry and Photobiology, 86(3), 538–544. https://doi.org/10.1111/j.1751-1097.2009.00688.x
  • Chakraborty, B., Roy, A. S., Dasgupta, S., & Basu, S. (2010). Magnetic field effect corroborated with docking study to explore photoinduced electron transfer in drug-protein interaction. The Journal of Physical Chemistry A, 114(51), 13313–13325. https://doi.org/10.1021/jp109604a
  • Charache, S., Dover, G. J., Moore, R. D., Eckert, S., Ballas, S. K., Koshy, M., Milner, P. F., Orringer, E. P., Phillips, G., & Platt, O. S. (1992). Hydroxyurea: Effects on hemoglobin F production in patients with sickle cell anemia. Blood, 79(10), 2555–2565. https://doi.org/10.1182/blood.V79.10.2555.bloodjournal79102555
  • Chatterjee, S., & Kumar, G. S. (2014). Targeting the heme proteins hemoglobin and myoglobin by janus green blue and study of the dye–protein association by spectroscopy and calorimetry. RSC Advances, 4(80), 42706–42715. https://doi.org/10.1039/C4RA06600F
  • Chaturvedi, S. K., Siddiqi, M. K., Alam, P., Zaman, M., & Khan, R. H. (2016). Comparative binding study of anti-tuberculosis drug Pyrazinamide with serum albumins. RSC Advances, 6(89), 85860–85869. https://doi.org/10.1039/C6RA10487H
  • Daggett, V., & Fersht, A. (2003). The present view of the mechanism of protein folding. Nature Reviews. Molecular Cell Biology, 4(6), 497–502. https://doi.org/10.1038/nrm1126
  • Darban, R. A., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • Das, S., Bora, N., Rohman, M. A., Sharma, R., Jha, A. N., & Roy, A. S. (2018). Molecular recognition of bio-active flavonoid squercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Physical Chemistry Chemical Physics: PCCP, 20(33), 21668–21684. https://doi.org/10.1039/C8CP02760A
  • Das, S., Hazarika, Z., Sarmah, S., Baruah, K., Rohman, M. A., Paul, D., Jha, A. N., & Roy, A. S. (2020). Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multispectroscopic, docking and molecular dynamics simulation studies. Journal of Photochemistry and Photobiology B: Biology, 205, 11825.
  • Das, S., Karn, A., Sarmah, R., Rohman, M. A., Koley, S., Ghosh, P., & Roy, A. S. (2018). Characterization of non-covalent binding of 6-hydroxyflavone and 5,7-dihydroxyflavone with bovine hemoglobin: Multi-spectroscopic and molecular docking analyses. Journal of Photochemistry and Photobiology. B, Biology, 178, 40–52. https://doi.org/10.1016/j.jphotobiol.2017.10.021
  • Das, S., Santra, S., Rohman, M. A., Ray, M., Jana, M., & Roy, A. S. (2019). An insight into the Binding of 6- Hydroxyflavone with hen egg white lysozyme: A combined approach of multi-spectroscopic and computational studies. Journal of Biomolecular Structure & Dynamics, 37(15), 4019–4034. https://doi.org/10.1080/07391102.2018.1535451
  • Ding, F., Peng, W., & Peng, Y.-K. (2016). Biophysical exploration of protein–flavonol recognition: Effects of molecular properties andconformational flexibility. Physical Chemistry Chemical Physics: PCCP, 18(17), 11959–11971. https://doi.org/10.1039/C5CP07754K
  • Donehower, R. C. (1990). Hydroxyurea: Cancer chemotherapy. J. B. Lippincott Co.
  • Fang, X., Cao, S., & Liu, R. (2011). Interaction of bisphenol A with bovine hemoglobin using spectroscopic and molecular modeling methods. Applied Spectroscopy, 65(11), 1250–1253. https://doi.org/10.1366/11-06357
  • Frenette, P. S., & Atweh, G. F. (2007). Sickle cell disease: Old discoveries, new concepts, and future promise. The Journal of Clinical Investigation, 117(4), 850–858. https://doi.org/10.1172/JCI30920
  • Frisch, M. J., Trucks, G. W., Schiegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery Jr, J. A., Vreven, T., Kudin, K. N., & Burant, J. C. (2009). Gaussian 09. Gaussian, Inc.
  • Gao, W. Y., Cara, A., Gallo, R. C., & Lori, F. (1993). Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8925–8928. https://doi.org/10.1073/pnas.90.19.8925
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gokara, M., Malavath, T., Kalangi, S. K., Reddana, P., & Subramanyam, R. (2014). Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications. Journal of Biomolecular Structure & Dynamics, 32(8), 1290–1302. https://doi.org/10.1080/07391102.2013.817953
  • Greenfield, N. J., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8(10), 4108–4116. https://doi.org/10.1021/bi00838a031
  • Heerenberg, D. (1992). Basic principles in therapeutics. McGraw-Hill.
  • Hazra, S., & Kumar, G. S. (2014). Structural and thermodynamic studies on the interaction of iminiumand alkanolamine forms of sanguinarine with hemoglobin. The Journal of Physical Chemistry. B, 118(14), 3771–3784. https://doi.org/10.1021/jp409764z
  • Hirsch, R. E., Zukin, R. S., & Nagel, R. L. (1980). Intrinsic fluorescence emission of intact oxy hemoglobins. Biochemical and Biophysical Research Communications, 93(2), 432–439. https://doi.org/10.1016/0006-291X(80)91096-7
  • Hirst, J. D., & Brooks, C. L. (1994). Helicity, circular dichroism and molecular dynamics of proteins. Journal of Molecular Biology, 243(2), 173–178. https://doi.org/10.1006/jmbi.1994.1644
  • Ikeda, K., Hamaguchi, K., Miwa, S., & Nishina, T. (1972). Circular dichroism of human lysozyme. Journal of Biochemistry, 71(3), 371–378.
  • Kamaljeet, B. S., & Sengupta, U. (2016). A study of the interaction of bovine hemoglobin with synthetic dyes using spectroscopic techniques and molecular docking. Frontiers in Chemistry, 4, 50. https://doi.org/10.3389/fchem00050.
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.) Springer Science + Business Media.
  • Lapidus, L. J. (2017). Protein unfolding mechanisms and their effects on folding experiments. F1000Research, 6, 1723. https://doi.org/10.12688/f1000research.12070.1.
  • Lloyd, J. B. F. (1971a). Synchronized excitation of fluorescence emission spectra. Nature Physical Science, 231(20), 64–65. https://doi.org/10.1038/physci231064a0
  • Lloyd, J. B. F. (1971b). The nature and evidential value of the luminescence of automobile engine oils and related materials: Part I. Synchronous excitation of fluorescence emission. Journal of the Forensic Science Society, 11(2), 83–94. https://doi.org/10.1016/S0015-7368(71)70633-1
  • Madaan, K., Kaushik, D., & Verma, T. (2012). Hydroxyurea: A key player in cancer chemotherapy. Expert Review of Anticancer Therapy, 12(1), 19–29. https://doi.org/10.1586/era.11.175
  • Maier-Redelsperger, M., de Montalembert, M., Flahault, A., Neonato, M. G., Ducrocq, R., Masson, M.-P., Girot, R., Elion, J., & The French Study Group on Sickle Cell Disease. (1998). Fetal hemoglobin and F-cell responses to long-term hydroxyurea treatment in young sickle cell patients. Blood, 91(12), 4472–4479. https://doi.org/10.1182/blood.V91.12.4472.412k16_4472_4479
  • Maity, M., Dolui, S., & Maiti, N. C. (2015). Hydrogen bonding plays a significant role inthe binding of coomassie brilliant blue-R tohemoglobin: FT-IR, fluorescence and molecular dynamics studies. Physical Chemistry Chemical Physics, 17(46), 31216–31227. https://doi.org/10.1039/C5CP04661K
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Mandal, P., Bardhan, M., & Ganguly, T. (2010). A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin. Journal of Photochemistry and Photobiology B: Biology, 99(2), 78–86. https://doi.org/10.1016/j.jphotobiol.2010.02.009
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030
  • Millan, S., Satish, L., Bera, K., Susrisweta, B., Singh, D. V., & Sahoo, H. (2017). A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: An effect on protein conformation. The Journal of Physical Chemistry B, 121(7), 1475–1484. https://doi.org/10.1021/acs.jpcb.6b10991
  • Mokaberi, P., Reyhani, V., Amiri-Tehranizadeh, Z., Saberi, M. R., Beigoli, S., Samandar, F., & Chamani, J. (2019). New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: Binary and ternary approaches. New Journal of Chemistry, 43(21), 8132–8145. https://doi.org/10.1039/C9NJ01048C
  • Moosavi-Movahedi, A. A., Chamani, J., Gharanfoli, M., & Hakimelahi, G. H. (2004). Differential scanning calorimetric study of the molten globule state of cytochrome c induced by sodium n-dodecyl sulfate. Thermochimica Acta, 409(2), 137–144. https://doi.org/10.1016/S0040-6031(03)00358-7
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mueser, T. C., Rogers, P. H., & Arnone, A. (2000). Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry, 39(50), 15353–15364. https://doi.org/10.1021/bi0012944
  • Naik, K. M., Kolli, D. B., & Nandibewoor, S. T. (2014). Elucidation of binding mechanism of hydroxyurea on serum albumins by different spectroscopic studies. SpringerPlus, 3, 360. https://doi.org/10.1186/2193-1801-3-360.
  • Naeeminejad, S., Darban, R. A., Beigoli, S., Saberi, M. R., & Chamani, J. (2017). Studying the interaction between three synthesized heterocyclic sulfonamide compounds with hemoglobin by spectroscopy and molecular modeling techniques. Journal of Biomolecular Structure & Dynamics, 35(15), 3250–3267. https://doi.org/10.1080/07391102.2016.1252283
  • Noronha, M., Santos, R., Paci, E., Santos, H., & Macanita, A. L. (2009). Fluorescence lifetimes of tyrosine residues in cytochrome c′′ as local probes to study protein unfolding. The Journal of Physical Chemistry. B, 113(13), 4466–4474. https://doi.org/10.1021/jp805781r
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS forcefield parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature, 228(5273), 726–739. https://doi.org/10.1038/228726a0
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pule, G. D., Mowla, S., Novitzky, N., Wiysonge, C. S., & Wonkam, A. (2015). A systematic review of known mechanisms of hydroxyurea-induced fetal haemoglobin for treatment of sickle cell disease. Expert Review of Hematology, 8(5), 669–679. https://doi.org/10.1586/17474086.2015.1078235
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Raha, K., & Merz Jr., K. M. (2005). Calculating binding free energy in protein-ligand interaction. Annual Reports in Computational Chemistry, 1, 113–130.
  • Roamcharern, N., Payoungkiattikun, W., Anwised, P., Mahong, B., Jangpromma, N., Daduang, S., & Klaynongsruang, S. (2019). Physicochemical properties and oxygen affinity of glutaraldehyde polymerized crocodile hemoglobin: The new alternative hemoglobin source for hemoglobin-based oxygen carriers. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 852–861. https://doi.org/10.1080/21691401.2019.1579733
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Saha, B., Chowdhury, S., Sanyal, D., Chattopadhyay, K., & Kumar, G. S. (2018). Comparative study of toluidine blue O and methylene blue binding to lysozyme and their inhibitory effects on protein aggregation. ACS Omega, 3(3), 2588–2601. https://doi.org/10.1021/acsomega.7b01991
  • Saha, S., & Chowdhury, J. (2019). Binding interaction of juglone with lysozyme: Spectroscopic studies aided by in silico calculations. Journal of Photochemistry and Photobiology. B, Biology, 193, 89–99. https://doi.org/10.1016/j.jphotobiol.2019.02.006
  • Saha, S., Sannigrahi, A., Chattopadhyay, K., & Chowdhury, J. (2020). Interaction of KMP-11 and its mutants with ionic liquid choline dihydrogen phoshphate: Multispectroscopic studies aided by docking and molecular dynamics simulations. Journal of Molecular Liquids, 301, 112475. https://doi.org/10.1016/j.molliq.2020.112475
  • Sanei, H., Asoodeh, A., Hamedakbari-Tusi, S., & Chamani, J. (2011). Multi-spectroscopic investigations and colchicine interaction with human hemoglobin: binary and ternary systems. Journal of Solution Chemistry, 40(11), 1905–1931. https://doi.org/10.1007/s10953-011-9766-3
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shamsi, A., Ahmed, A., & Bano, B. (2018). Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. Journal of Biomolecular Structure & Dynamics, 36(6), 1479–1489. https://doi.org/10.1080/07391102.2017.1326320
  • Shanmugaraj, K., Anandakumar, S., & Ilanchelian, M. (2015). Probing the binding interaction of thionine with lysozyme: A spectroscopic and molecular docking investigation. Dyes and Pigments, 112, 210–−219. https://doi.org/10.1016/j.dyepig.2014.07.003
  • Sonu, V. K., Rajkumar, I., Bhattacharjee, K., Joshi, S. R., & Mitra, S. (2019). Interaction of caffeine and sulfadiazine with lysozyme adsorbed at colloidal metal nanoparticle interface: Influence on drug transport ability and antibacterial activity. Journal of Biomolecular Structure & Dynamics, 37(2), 321–335. https://doi.org/10.1080/07391102.2018.1426497
  • Sood, D., Kumar, N., Singh, A., Tomar, V., Dass, S. K., & Chandra, R. (2019). Deciphering the binding mechanism of noscapine with lysozyme: Biophysical and chemoinformatic approaches. ACS Omega, 4(14), 16233–16241. https://doi.org/10.1021/acsomega.9b02578
  • Vankayala, S. L., Hargis, J. C., & Woodcock, H. L. (2012). Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors. Journal of Chemical Information and Modeling, 52(5), 1288–1297. https://doi.org/10.1021/ci300035c
  • Whitfold, D. (2005). Proteins structure and function. Wiley.
  • Yu, X., Yang, Y., Shiyu, L., Yao, Q., Heting, L., Xiaofang, L., & Pinggui, Y. (2011). The fluorescence spectroscopic study on the interaction between imidazo [2, 1-b] thiazole analogues and bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1), 322–328. https://doi.org/10.1016/j.saa.2011.08.038
  • Yue, Y., Zhang, Y., Li, Y., Zhu, J., Qin, J., & Chen, X. (2008). Interaction of nobiletin with human serum albumin studied using optical spectroscopy and molecular modeling methods. Journal of Luminescense, 128(3), 513–520. https://doi.org/10.1016/j.jlumin.2007.09.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.