5,106
Views
24
CrossRef citations to date
0
Altmetric
Review Articles

Development of remdesivir repositioning as a nucleotide analog against COVID-19 RNA dependent RNA polymerase

, , , , , , & show all
Pages 3771-3779 | Received 19 Apr 2020, Accepted 06 May 2020, Published online: 20 May 2020

References

  • Aanouz, I., Belhassan, A., El Khatabi, K., Lakhlifi, T., El Idrissi, M., & Bouachrine, M. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758790
  • Aggarwal, M., Leser, G. P., & Lamb, R. A. (2020). Repurposing papaverine as an antiviral agent against influenza viruses and paramyxoviruses. Journal of Virology, 94(6), 1–14. https://doi.org/10.1128/JVI.01888-19
  • Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., Baric, R. S., & Denison, M. R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 9(2), 218. https://doi.org/10.1128/mBio.00221-18
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), 254. https://doi.org/10.3390/v12030254
  • Andersen, P. I., Ianevski, A., Lysvand, H., Vitkauskiene, A., Oksenych, V., Bjørås, M., Telling, K., Lutsar, I., Dumpis, U., Irie, Y., Tenson, T., Kantele, A., & Kainov, D. E. (2020). Discovery and development of safe-in-man broad-spectrum antiviral agents. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 93, 268–276. https://doi.org/10.1016/j.ijid.2020.02.018
  • Arabi, Y. M., Alothman, A., Balkhy, H. H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Al Jeraisy, M., Deeb, A. M., Assiri, A. M., Al-Hameed, F., AlSaedi, A., Mandourah, Y., Almekhlafi, G. A., Sherbeeni, N. M., Elzein, F. E., Memon, J., Taha, Y., Almotairi, A., Maghrabi, K. A., Qushmaq, I., & Hussein, M. A. (2018). Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): Study protocol for a randomized controlled trial. Trials, 19(1), 81. https://doi.org/10.1186/s13063-017-2427-0
  • Batlle, D., Wysocki, J., & Satchell, K. (2020). Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clinical Science, 134(5), 543–545. https://doi.org/10.1042/CS20200163
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 Coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1758788
  • Brown, A. J., Won, J. J., Graham, R. L., Dinnon III, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169, 104541. https://doi.org/10.1016/j.antiviral.2019.104541
  • Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19). In StatPearls [Internet]. StatPearls Publishing.
  • Chatterjee, S. (2020). Understanding the nature of variations in structural sequences coding for coronavirus spike, envelope, membrane and nucleocapsid proteins of SARS-CoV-2, 1–12.
  • Chen, L., & Hao, G. (2020). The role of angiotensin converting enzyme 2 in coronaviruses/influenza viruses and cardiovascular disease. Cardiovascular Research. https://dx.doi.org/10.2139/ssrn.3537961
  • Chen, W.-H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The SARS-CoV-2 vaccine pipeline: An overview. Current Tropical Medicine Reports. https://doi.org/10.1007/s40475-020-00201-6.
  • Chhikara, B. S., Rathi, B., Singh, J., & Poonam, F. (2020). Corona virus SARS-CoV-2 disease COVID-19: Infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chemical Biology Letters, 7, 63–72.
  • Choi, W. S., Kang, C.-I., Kim, Y., Choi, J.-P., Joh, J. S., Shin, H.-S., Kim, G., Peck, K. R., Chung, D. R., Kim, H. O., Song, S. H., Kim, Y. R., Sohn, K. M., Jung, Y., Bang, J. H., Kim, N. J., Lee, K. S., Jeong, H. W., Rhee, J.-Y., Kim, E. S., Woo, H., & Kim, Y.-S. (2016). Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea. Infection & Chemotherapy, 48(2), 118–126. https://doi.org/10.3947/ic.2016.48.2.118
  • Cui, H., Zhang, C., Zhao, Z., Zhang, C., Fu, Y., Li, J., Chen, G., Lai, M., Li, Z., Dong, S., Chen, L., Li, Z., Wang, C., Liu, J., Gao, Y., & Guo, Z. (2020). Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity. Virology Journal, 17(1), 12. https://doi.org/10.1186/s12985-020-1283-9
  • de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T., & Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 6771–6776. https://doi.org/10.1073/pnas.1922083117
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
  • Douglas, M. G., Kocher, J. F., Scobey, T., Baric, R. S., & Cockrell, A. S. (2018). Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Virology, 517, 98–107. https://doi.org/10.1016/j.virol.2017.12.006
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758791
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1756411
  • Fang, L., Karakiulakis, G., & Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, 8(4), e21. https://doi.org/10.1016/S2213-2600(20)30116-8
  • Fung, S.-Y., Yuen, K.-S., Ye, Z.-W., Chan, C.-P., & Jin, D.-Y. (2020). A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses. Emerging Microbes & Infections, 9(1), 558–570. https://doi.org/10.1080/22221751.2020.1736644
  • Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A. A., Zhu, G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., Peng, C., Zhang, Y.-J., Luo, C.-M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S.-Y., Wang, L.-F., Daszak, P., & Shi, Z.-L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535–538. https://doi.org/10.1038/nature12711
  • Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Gotte, M. (2020). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. The Journal of Biological Chemistry, 295(15), 4773–4779. https://doi.org/10.1074/jbc.AC120.013056
  • Gretebeck, L. M., & Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Current Opinion in Virology, 13, 123–129. https://doi.org/10.1016/j.coviro.2015.06.009
  • Guo, D. (2020). Old weapon for new enemy: Drug repurposing for treatment of newly emerging viral diseases. Virologica Sinica, 1–3. https://doi.org/10.1007/s12250-020-00204-7
  • Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2020.1751300
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., & Mehrabi, M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1754293
  • Heymann, D. L., & Shindo, N. (2020). COVID-19: What is next for public health? The Lancet, 395(10224), 542–545. https://doi.org/10.1016/S0140-6736(20)30374-3
  • Ianevski, A., Zusinaite, E., Kuivanen, S., Strand, M., Lysvand, H., Teppor, M., Kakkola, L., Paavilainen, H., Laajala, M., Kallio-Kokko, H., Valkonen, M., Kantele, A., Telling, K., Lutsar, I., Letjuka, P., Metelitsa, N., Oksenych, V., Bjørås, M., Nordbø, S. A., … Kainov, D. (2018). Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Research, 154, 174–182. https://doi.org/10.1016/j.antiviral.2018.04.016
  • Ji, X., & Li, Z. (2020). Medicinal chemistry strategies toward host targeting antiviral agents. Medicinal Research Reviews, 1–39. https://doi.org/10.1002/med.21664
  • Jordan, P. C., Liu, C., Raynaud, P., Lo, M. K., Spiropoulou, C. F., Symons, J. A., Beigelman, L., & Deval, J. (2018). Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase. PLoS Pathogens, 14(2), e1006889. https://doi.org/10.1371/journal.ppat.1006889
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease$. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1760137
  • Ju, J., Li, X., Kumar, S., Jockusch, S., Chien, M., Tao, C., Morozova, I., Kalachikov, S., Kirchdoerfer, R., & Russo, J. J. (2020). Nucleotide analogues as inhibitors of SARS-CoV polymerase. bioRxiv, 1–18. https://doi.org/10.1101/2020.03.12.989186
  • Khan, R. J., Jha, R. K., Amera, G., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-Cov-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like Proteinase and 2’-O-RiboseMethyltransferase. Journal of Biomolecular Structure and Dynamics, 1–40. https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1751298
  • Kouznetsova, J., Sun, W., Martínez-Romero, C., Tawa, G., Shinn, P., Chen, C. Z., Schimmer, A., Sanderson, P., McKew, J. C., Zheng, W., & García-Sastre, A. (2014). Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerging Microbes & Infections, 3(1), 1–7. https://doi.org/10.1038/emi.2014.88
  • Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Lai, M. M., & Cavanagh, D. (1997). The molecular biology of coronaviruses. In Advances in virus research (pp. 1–100). Elsevier.
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Publishing Group.
  • Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine, 27(2), 1–4. https://doi.org/10.1093/jtm/taaa021
  • Lo, M. K., Feldmann, F., Gary, J. M., Jordan, R., Bannister, R., Cronin, J., Patel, N. R., Klena, J. D., Nichol, S. T., Cihlar, T., Zaki, S. R., Feldmann, H., Spiropoulou, C. F., & de Wit, E. (2019). Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science Translational Medicine, 11(494), eaau9242. https://doi.org/10.1126/scitranslmed.aau9242
  • Mackie, P. (2003). The classification of viruses infecting the respiratory tract. Paediatric Respiratory Reviews, 4(2), 84–90. https://doi.org/10.1016/S1526-0542(03)00031-9
  • Mahase, E. (2020). Coronavirus: Covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. British Medical Journal Publishing Group.
  • Menéndez-Arias, L., Álvarez, M., & Pacheco, B. (2014). Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: Mechanism of action and resistance. Current Opinion in Virology, 8, 1–9. https://doi.org/10.1016/j.coviro.2014.04.005
  • Mercorelli, B., Palù, G., & Loregian, A. (2018). Drug repurposing for viral infectious diseases: How far are we? Trends in Microbiology, 26(10), 865–876. https://doi.org/10.1016/j.tim.2018.04.004
  • Morra, M. E., Van Thanh, L., Kamel, M. G., Ghazy, A. A., Altibi, A. M. A., Dat, L. M., Thy, T. N. X., Vuong, N. L., Mostafa, M. R., Ahmed, S. I., Elabd, S. S., Fathima, S., Le Huy Vu, T., Omrani, A. S., Memish, Z. A., Hirayama, K., & Huy, N. T. (2018). Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta‐analysis. Reviews in Medical Virology, 28(3), e1977. https://doi.org/10.1002/rmv.1977
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2020.1752802
  • Novel, C. P. E. R. E. (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liuxingbingxue Zazhi, 41, 145.
  • Oh, M.-D., Park, W. B., Choe, P. G., Choi, S.-J., Kim, J.-I., Chae, J., Park, S. S., Kim, E.-C., Oh, H. S., Kim, E. J., Nam, E. Y., Na, S. H., Kim, D. K., Lee, S.-M., Song, K.-H., Bang, J. H., Kim, E. S., Kim, H. B., Park, S. W., & Kim, N. J. (2016). Viral load kinetics of MERS coronavirus infection. The New England Journal of Medicine, 375(13), 1303–1305. https://doi.org/10.1056/NEJMc1511695
  • Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R. L., & Yang, L. (2020). Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology, 200370.
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1757510
  • Paules, C. I., Marston, H. D., & Fauci, A. S. (2020). Coronavirus infections—more than just the common cold. Jama, 323(8), 707–708. https://doi.org/10.1001/jama.2020.0757
  • Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W., & Haque, U. (2020). The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? International Journal of Epidemiology, 1–10. https://doi.org/10.1093/ije/dyaa033
  • Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R., & Larsen, S. (2017). The complexity and cost of vaccine manufacturing - An overview. Vaccine, 35(33), 4064–4071. https://doi.org/10.1016/j.vaccine.2017.06.003
  • Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology, 38(1), 1–9. https://doi.org/10.12932/AP-200220-0772
  • Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433
  • Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., & Dhibar, D. P. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1753580
  • Senanayake, S. L. (2020). Drug repurposing strategies for COVID-19. Future Science, 2(2), 1–3.
  • Senathilake, K., Samarakoon, S., & Tennekoon, K. (2020). Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A drug repurposing approach. Preprints, 1–15. https://doi.org/10.20944/preprints202003.0042.v1
  • Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R. L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., … Baric, R. S. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9(396), eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  • Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., & Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11(1), 14. https://doi.org/10.1038/s41467-019-13940-6
  • Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., Chun, K., Zhang, L., Neville, S., Carra, E., Lew, W., & Ross, B. (2017). Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo [2, 1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. ACS Publications.
  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059
  • Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Götte, M. (2019). Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 11(4), 326. https://doi.org/10.3390/v11040326
  • Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health: TM & IH, 25(3), 278–280. https://doi.org/10.1111/tmi.13383
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, Y., Wang, Y., Chen, Y., & Qin, Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. Journal of Medical Virology, 92(6), 568–576. https://doi.org/10.1002/jmv.25748
  • Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., … Bavari, S. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381–385. https://doi.org/10.1038/nature17180
  • Woo, P. C., Huang, Y., Lau, S. K., & Yuen, K.-Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses, 2(8), 1804–1820. https://doi.org/10.3390/v2081803
  • Woo, P. C., Lau, S. K., Li, K. S., Poon, R. W., Wong, B. H., Tsoi, H-w., Yip, B. C., Huang, Y., Chan, K-h., & Yuen, K-y. (2006). Molecular diversity of coronaviruses in bats. Virology, 351(1), 180–187. https://doi.org/10.1016/j.virol.2006.02.041
  • Xiong, R., Zhang, L., Li, S., Sun, Y., Ding, M., Wang, Y., Zhao, Y., Wu, Y., Shang, W., & Jiang, X. (2020). Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.03.11.983056
  • Xu, J., Shi, P.-Y., Li, H., & Zhou, J. (2020). Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infectious Diseases, 6(5), 909–915. https://doi.org/10.1021/acsinfecdis.0c00052
  • Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W.-K., Qian, X., Tcw, J., Kouznetsova, J., Ogden, S. C., Hammack, C., Jacob, F., Nguyen, H. N., Itkin, M., Hanna, C., Shinn, P., Allen, C., Michael, S. G., Simeonov, A., Huang, W., … Tang, H. (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 22(10), 1101–1107. https://doi.org/10.1038/nm.4184
  • Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F.-S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
  • Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Chen, T., Xu, Y., Zhu, H., Yuan, J., Gu, S., Wei, Q., Chen, H., Yuen, K.-Y., & Qin, C. (2014). An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. The Journal of Infectious Diseases, 209(2), 236–242. https://doi.org/10.1093/infdis/jit590
  • Zhu, Z., Zhong, C., Zhang, K., Dong, C., Peng, H., Xu, T., Wang, A., Guo, Z., & Zhang, Y. (2020). Epidemic trend of corona virus disease 2019 (COVID-19) in mainland China. Zhonghua yu Fang yi Xue za Zhi [Chinese Journal of Preventive Medicine], 54, E022. https://doi.org/10.3760/cma.j.cn112150-20200222-00163
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K.-Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.