322
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Molecular insights into the loading and dynamics of anticancer drugs on silicene and folic acid-conjugated silicene nanosheets: DFT calculation and MD simulation

, , ORCID Icon &
Pages 3892-3899 | Received 19 Mar 2020, Accepted 16 May 2020, Published online: 05 Jun 2020

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Akçay, H. T., & Bayrak, R. (2014). Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 122, 142–152. https://doi.org/10.1016/j.saa.2013.11.028
  • Berendsen, H. J. C., Postma, J. P. M. v., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Boys, S. F., & Bernardi, F. d. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. https://doi.org/10.1080/00268977000101561
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 14101. https://doi.org/10.1063/1.2408420
  • Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., Liu, Z., Han, Y., Wang, L., Li, J., Deng, L., Liu, Y.-N., & Guo, S. (2017). Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Advanced Materials, 29(5), 1603864. https://doi.org/10.1002/adma.201603864
  • Chimene, D., Alge, D. L., & Gaharwar, A. K. (2015). Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Advanced Materials (Deerfield Beach, Fla.), 27(45), 7261–7284. https://doi.org/10.1002/adma.201502422
  • Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B. H., & Min, D.-H. (2013). Biomedical applications of graphene and graphene oxide. Accounts of Chemical Research, 46(10), 2211–2224. https://doi.org/10.1021/ar300159f
  • Dastani, N., Arab, A., & Raissi, H. (2019). Adsorption of Ampyra anticancer drug on the graphene and functionalized graphene as template materials with high efficient carrier. Adsorption, 1–15.
  • de Sousa, M., de Luna, L. A., Fonseca, L. C., Giorgio, S., & Alves, O. L. (2018). Folic-acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Applied Nano Materials, 1(2), 922–932. https://doi.org/10.1021/acsanm.7b00324
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven Jr, T., Kudin, K. N., & Burant, J. C. (2003). Gaussian 03, revision C. 02 (or D. 01). Gaussian Inc.
  • Gao, F., Zhang, J., Fu, C., Xie, X., Peng, F., You, J., Tang, H., Wang, Z., Li, P., & Chen, J. (2017). iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. International Journal of Nanomedicine, 12, 4147–4162. https://doi.org/10.2147/IJN.S134148
  • Hasanzade, Z., & Raissi, H. (2018). Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. Journal of Molecular Liquids, 255, 269–278. https://doi.org/10.1016/j.molliq.2018.01.159
  • Hashemzadeh, H., & Raissi, H. (2017). The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: A molecular dynamics simulation study. Journal of Molecular Modeling, 23(8), 222. https://doi.org/10.1007/s00894-017-3391-z
  • Hashemzadeh, H., & Raissi, H. (2019). Loading and release of anticancer drug from phosphorene as a template material with high efficient carrier: From vacuum to cell membrane. Journal of Molecular Liquids, 291, 111346. https://doi.org/10.1016/j.molliq.2019.111346
  • Hashemzadeh, H., & Raissi, H. (2020). Understanding loading, diffusion and releasing of Doxorubicin and Paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems. Applied Surface Science, 500, 144220. https://doi.org/10.1016/j.apsusc.2019.144220
  • Huang, J., & MacKerell Jr, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huang, L., Xu, H., Zhang, Z., Chen, C., Jiang, J., Ma, X., Chen, B., Li, Z., Zhong, H., & Peng, L.-M. (2014). Graphene/Si CMOS hybrid hall integrated circuits. Scientific Reports, 4, 5548. https://doi.org/10.1038/srep05548
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Keith, T. A. (2013). AIMAll (Version 13.11. 04). TK Gristmill Software.
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Mennucci, B. (2012). Polarizable continuum model. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(3), 386–404. https://doi.org/10.1002/wcms.1086
  • Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), 117–129. https://doi.org/10.1016/0301-0104(81)85090-2
  • Nussbaumer, S., Bonnabry, P., Veuthey, J.-L., & Fleury-Souverain, S. (2011). Analysis of anticancer drugs: A review. Talanta, 85(5), 2265–2289. https://doi.org/10.1016/j.talanta.2011.08.034
  • Parr, R. G., Szentpaly, L. v., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Roome, N. J., & Carey, J. D. (2014). Beyond graphene: Stable elemental monolayers of silicene and germanene. ACS Applied Materials & Interfaces, 6(10), 7743–7750. https://doi.org/10.1021/am501022x
  • Rozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154–11161. https://doi.org/10.1021/ja0017864
  • Saikia, N., Seel, M., & Pandey, R. (2016). Stability and electronic properties of 2D nanomaterials conjugated with pyrazinamide chemotherapeutic: A first-principles cluster study. The Journal of Physical Chemistry C, 120(36), 20323–20332. https://doi.org/10.1021/acs.jpcc.6b06000
  • Shahabi, M., & Raissi, H. (2018). Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method. Journal of Biomolecular Structure & Dynamics, 36(10), 2517–2529. https://doi.org/10.1080/07391102.2017.1360209
  • Shahabi, M., & Raissi, H. (2020). Payload delivery of anticancer drug Tegafur with the assistance of Graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey. Applied Surface Science, 517, 146186. https://doi.org/10.1016/j.apsusc.2020.146186
  • Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert, A. T. B., Slipchenko, L. V., Levchenko, S. V., O’Neill, D. P., DiStasio Jr, R. A., Lochan, R. C., Wang, T., Beran, G. J. O., Besley, N. A., Herbert, J. M., Yeh Lin, C., Van Voorhis, T., Hung Chien, S., … Head-Gordon, M. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 8(27), 3172–3191. https://doi.org/10.1039/B517914A
  • Wang, Z., Zhou, C., Xia, J., Via, B., Xia, Y., Zhang, F., Li, Y., & Xia, L. (2013). Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloids and Surfaces. B, Biointerfaces, 106, 60–65. https://doi.org/10.1016/j.colsurfb.2013.01.032
  • Wei, M., Lu, T., Nong, Z., Li, G., Pan, X., Wei, Y., Yang, Y., Wu, N., Huang, J., Pan, M., Li, X., & Meng, F. (2019). Reductive response and RGD targeting nano-graphene oxide drug delivery system. Journal of Drug Delivery Science and Technology, 53, 101202. https://doi.org/10.1016/j.jddst.2019.101202
  • Zarei, H., Kazemi Oskuee, R., Hanafi-Bojd, M. Y., Gholami, L., Ansari, L., & Malaekeh-Nikouei, B. (2019). Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharmaceutical Development and Technology, 24(1), 127–132. https://doi.org/10.1080/10837450.2018.1431930
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.