135
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Repurposing of cefpodoxime proxetil as potent neuroprotective agent through computational prediction and in vitro validation

, , , , , , ORCID Icon & show all
Pages 3975-3985 | Received 25 Apr 2020, Accepted 18 May 2020, Published online: 08 Jun 2020

References

  • Allen, B. K., Mehta, S., Ember, S. W. J., Zhu, J. Y., Schonbrunn, E., Ayad, N. G., & Schurer, S. C. (2017). Identification of a novel class of BRD4 inhibitors by computational screening and binding simulations. ACS Omega, 2(8), 4760–4771. https://doi.org/10.1021/acsomega.7b00553
  • Blot, K., Bai, J., & Otani, S. (2013). The effect of non-competitive NMDA receptor antagonist MK-801 on neuronal activity in rodent prefrontal cortex: An animal model for cognitive symptoms of schizophrenia. Journal of Physiology, Paris, 107(6), 448–451. https://doi.org/10.1016/j.jphysparis.2013.04.003
  • Cadinu, D., Grayson, B., Podda, G., Harte, M. K., Doostdar, N., & Neill, J. C. (2018). NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology, 142, 41–62. https://doi.org/10.1016/j.neuropharm.2017.11.045
  • Chenard, B. L., Bordner, J., Butler, T. W., Chambers, L. K., Collins, M. A., De Costa, D. L., Ducat, M. F., Dumont, M. L., Fox, C. B., & Mena, E. E. (1995). (1S,2S)-1-(4-Hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: A potent new neuroprotectant which blocks N-methyl-D-aspartate responses. Journal of Medicinal Chemistry, 38(16), 3138–3145. https://doi.org/10.1021/jm00016a017
  • Feng, X. Y., Jia, W. Q., Liu, X., Jing, Z., Liu, Y. Y., Xu, W. R., & Cheng, X. C. (2019). Identification of novel PPARα/γ dual agonists by pharmacophore screening, docking analysis, ADMET prediction and molecular dynamics simulations. Computational Biology and Chemistry, 78, 178–189. https://doi.org/10.1016/j.compbiolchem.2018.11.023
  • Fischer, G., Mutel, V., Trube, G., Malherbe, P., Kew, J. N. C., Mohacsi, E., Heitz, M. P., & Kemp, J. A. (1997). Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. Journal of Pharmacology and Experimental Therapeutics, 283(3), 1285.
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gawaskar, S., Temme, L., Schreiber, J. A., Schepmann, D., Bonifazi, A., Robaa, D., Sippl, W., Strutz-Seebohm, N., Seebohm, G., & Wünsch, B. (2017). Design, synthesis, pharmacological evaluation and docking studies of GluN2B-selective NMDA receptor antagonists with a Benzo[7]annulen-7-amine Scaffold. ChemMedChem, 12(15), 1212–1222. https://doi.org/10.1002/cmdc.201700311
  • Gitto, R., De Luca, L., Ferro, S., Occhiuto, F., Samperi, S., De Sarro, G., Russo, E., Ciranna, L., Costa, L., & Chimirri, A. (2008). Computational studies to discover a new NR2B/NMDA receptor antagonist and evaluation of pharmacological profile. ChemMedChem, 3(10), 1539–1548. https://doi.org/10.1002/cmdc.200800124
  • Gitto, R., De Luca, L., Ferro, S., Citraro, R., De Sarro, G., Costa, L., Ciranna, L., & Chimirri, A. (2009). Development of 3-substituted-1H-indole derivatives as NR2B/NMDA receptor antagonists. Bioorganic & Medicinal Chemistry, 17(4), 1640–1647. https://doi.org/10.1016/j.bmc.2008.12.058
  • Glynn-Servedio, B. E., & Ranola, T. S. (2017). AChE inhibitors and NMDA receptor antagonists in advanced Alzheimer's disease. The Consultant Pharmacist: The Journal of the American Society of Consultant Pharmacists, 32(9), 511–518. https://doi.org/10.4140/TCP.n.2017.511
  • Hu, N.-W., Klyubin, I., Anwyl, R., & Rowan, M. J. (2009). GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20504–20509. https://doi.org/10.1073/pnas.0908083106
  • Jadhav, A., Dash, R., Hirwani, R., & Abdin, M. (2018). Sequence and structure insights of kazal type thrombin inhibitor protein: Studied with phylogeny, homology modeling and dynamic MM/GBSA studies. International Journal of Biological Macromolecules, 108, 1045–1052. https://doi.org/10.1016/j.ijbiomac.2017.11.020
  • Jiang, S. X., Zheng, R.-Y., Zeng, J.-Q., Li, X.-L., Han, Z., & Hou, S. T. (2010). Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists. European Journal of Pharmacology, 629(1–3), 12–19. https://doi.org/10.1016/j.ejphar.2009.11.063
  • Karakas, E., Simorowski, N., & Furukawa, H. (2011). Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature, 475(7355), 249–253. https://doi.org/10.1038/nature10180
  • Keith, W. (2001). Ifenprodil, a novel NMDA receptor antagonist: Site and mechanism of action. Current Drug Targets, 2(3), 285–298. https://doi.org/10.2174/1389450013348489
  • Krausova, B., Slavikova, B., Nekardova, M., Hubalkova, P., Vyklicky, V., Chodounska, H., Vyklicky, L., & Kudova, E. (2018). Positive modulators of the N-methyl-d-aspartate receptor: Structure-activity relationship study of steroidal 3-hemiesters. Journal of Medicinal Chemistry, 61(10), 4505–4516. https://doi.org/10.1021/acs.jmedchem.8b00255
  • Loftis, J. M., & Janowsky, A. (2003). The N-methyl-d-aspartate receptor subunit NR2B: Localization, functional properties, regulation, and clinical implications. Pharmacology & Therapeutics, 97(1), 55–85. https://doi.org/10.1016/S0163-7258(02)00302-9
  • Ma, C., Du, K., Zhao, Y., Zhang, L., Hu, B., & Cheng, M. (2018). Pyrrolo[2,1-c][1,4] benzodiazepine-3,11-diones protect SHSY-5Y cells from Cd-induced apoptosis involving suppression of endoplasmic reticulum stress. Bioorganic & Medicinal Chemistry, 26(18), 5151–5158. https://doi.org/10.1016/j.bmc.2018.09.011
  • Ma, C., Hu, B., Zhang, L., Zhao, Y., Wang, M., Wang, J., & Cheng, M. (2019). Computational investigation of the antagonism effect towards GluN2B-containing NMDA receptor: Combined ligand-based and target-based approach. Journal of Molecular Graphics & Modelling, 86, 95–105. https://doi.org/10.1016/j.jmgm.2018.10.009
  • Mao, J., Dai, W., Zhang, S., Sun, L., Wang, H., Gao, Y., Wang, J., & Zhang, F. (2019). Quinone-thioether metabolites of hydroquinone play a dual role in promoting a vicious cycle of ROS generation: in vitro and in silico insights. Archives of Toxicology, 93(5), 1297–1309. https://doi.org/10.1007/s00204-019-02443-4
  • Mark, E. L., Michael, J. K., III, & Kevin, J. R. (2006). Recent advances in the development of NR2B subtype-selective NMDA receptor antagonists. Current Topics in Medicinal Chemistry, 6(7), 697–709. https://doi.org/10.2174/156802606776894447
  • Mony, L., Kew, J. N., Gunthorpe, M. J., & Paoletti, P. (2009). Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. British Journal of Pharmacology, 157(8), 1301–1317. https://doi.org/10.1111/j.1476-5381.2009.00304.x
  • Morris, R. G., Steele, R. J., Bell, J. E., & Martin, S. J. (2013). N-methyl-d-aspartate receptors, learning and memory: Chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning. The European Journal of Neuroscience, 37(5), 700–717. https://doi.org/10.1111/ejn.12086
  • Omotuyi, O. I., & Ueda, H. (2015). Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Computational Biology and Chemistry, 55, 14–22. https://doi.org/10.1016/j.compbiolchem.2015.01.004
  • Potschka, H., Löscher, W., Wlaź, P., Behl, B., Hofmann, H. P., Treiber, H. J., & Szabo, L. (1998). LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: Pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy. British Journal of Pharmacology, 125(6), 1258–1266. https://doi.org/10.1038/sj.bjp.0702172
  • Sakkiah, S., Thangapandian, S., John, S., Kwon, Y. J., & Lee, K. W. (2010). 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. European Journal of Medicinal Chemistry, 45(6), 2132–2140. https://doi.org/10.1016/j.ejmech.2010.01.016
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shi, T., Hao, J. X., Wiesenfeld-Hallin, Z., & Xu, X. J. (2018). Gabapentin and NMDA receptor antagonists interacts synergistically to alleviate allodynia in two rat models of neuropathic pain. Scandinavian Journal of Pain, 18(4), 687–693. https://doi.org/10.1515/sjpain-2018-0083
  • Shivakumar, D., Williams, J., Wu, Y. J., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. Jr. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Stroebel, D., Buhl, D. L., Knafels, J. D., Chanda, P. K., Green, M., Sciabola, S., Mony, L., Paoletti, P., & Pandit, J. (2016). A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Molecular Pharmacology, 89(5), 541–551. https://doi.org/10.1124/mol.115.103036
  • Tewes, B., Frehland, B., Schepmann, D., Robaa, D., Uengwetwanit, T., Gaube, F., Winckler, T., Sippl, W., & Wünsch, B. (2015). Enantiomerically pure 2-methyltetrahydro-3-benzazepin-1-ols selectively blocking GluN2B subunit containing N-methyl-d-aspartate receptors. Journal of Medicinal Chemistry, 58(15), 6293–6305. https://doi.org/10.1021/acs.jmedchem.5b00897
  • Ugale, V. G., & Bari, S. B. (2016). Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: A combination of pharmacophore modelling, virtual screening and molecular docking studies. SAR and QSAR in Environmental Research, 27(2), 125–145. https://doi.org/10.1080/1062936X.2015.1136679
  • von Engelhardt, J., Coserea, I., Pawlak, V., Fuchs, E. C., Köhr, G., Seeburg, P. H., & Monyer, H. (2007). Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology, 53(1), 10–17. https://doi.org/10.1016/j.neuropharm.2007.04.015
  • Wang, M. X., Li, W., Wang, Y., Song, Y. B., Wang, J., & Cheng, M. S. (2018). In silico insight into voltage-gated sodium channel 1.7 inhibition for anti-pain drug discovery. Journal of Molecular Graphics & Modelling, 84, 18–28. https://doi.org/10.1016/j.jmgm.2018.05.006
  • Wang, Y., Feng, S. S., Gao, H. Y., & Wang, J. (2019). Computational investigations of gram-negative bacteria phosphopantetheine adenylyltransferase inhibitors using 3D-QSAR, molecular docking and molecular dynamic simulations. Journal of Biomolecular Structure & Dynamics, 38, 1435–1447. https://doi.org/10.1080/07391102.2019.1608305
  • Wang, Y., Hu, B., Peng, Y., Xiong, X., Jing, W., Wang, J., & Gao, H. (2019). In Silico exploration of the molecular mechanism of cassane diterpenoids on anti-inflammatory and immunomodulatory activity. Journal of Chemical Information and Modeling, 59(5), 2309–2323. https://doi.org/10.1021/acs.jcim.8b00862
  • Zhang, L., Quan, J., Zhao, Y., Yang, D., Zhao, Q., Liu, P., Cheng, M., & Ma, C. (2019). Design, synthesis and biological evaluation of 1-benzyl-5-oxopyrrolidine-2-carboximidamide derivatives as novel neuroprotective agents. European Journal of Medicinal Chemistry, 182, 111654. https://doi.org/10.1016/j.ejmech.2019.111654
  • Zhang, L., Zhao, Y., Wang, J., Yang, D., Zhao, C., Wang, C., Ma, C., & Cheng, M. (2018). Design, synthesis and bioevaluation of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives as potent neuroprotective agents. European Journal of Medicinal Chemistry, 151, 27–38. https://doi.org/10.1016/j.ejmech.2018.03.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.