715
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study

, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 3996-4004 | Received 18 Mar 2020, Accepted 18 May 2020, Published online: 02 Jun 2020

References

  • Amaravadhi, H., Baek, K., & Yoon, H. (2014). Revisiting de novo drug design: Receptor based pharmacophore screening. Current Topics in Medicinal Chemistry, 14(16), 1890–1898. https://doi.org/10.2174/1568026614666140929115506
  • Beckner, M. E., Fellows-Mayle, W., Zhang, Z., Agostino, N. R., Kant, J. A., Day, B. W., & Pollack, I. F. (2010). Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. International Journal of Cancer, 126(10), NA–2295. https://doi.org/10.1002/ijc.24918
  • Bertilsson, H., Tessem, M.-B., Flatberg, A., Viset, T., Gribbestad, I., Angelsen, A., & Halgunset, J. (2012). Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clinical Cancer Research, 18(12), 3261–3269. https://doi.org/10.1158/1078-0432.CCR-11-2929
  • Breen, M. E., & Soellner, M. B. (2015). Small molecule substrate phosphorylation site inhibitors of protein kinases: Approaches and challenges. ACS Chemical Biology, 10(1), 175–189. https://doi.org/10.1021/cb5008376
  • Deng, Z., Wong, N.-K., Guo, Z., Zou, K., Xiao, Y., & Zhou, Y. (2019). Dehydrocurvularin is a potent antineoplastic agent irreversibly blocking ATP-citrate lyase: Evidence from chemoproteomics. Chemical Communications (Cambridge, England)), 55(29), 4194–4197. https://doi.org/10.1039/c9cc00256a
  • Granchi, C. (2018). ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. European Journal of Medicinal Chemistry, 157, 1276–1291. https://doi.org/10.1016/j.ejmech.2018.09.001
  • Granchi, C. (2019). Discovery of allosteric inhibition of human ATP-citrate lyase. Trends in Pharmacological Sciences, 40(6), 364–366. https://doi.org/10.1016/j.tips.2019.04.008
  • Granchi, C., Lapillo, M., Glasmacher, S., Bononi, G., Licari, C., Poli, G., El Boustani, M., Caligiuri, I., Rizzolio, F., Gertsch, J., Macchia, M., Minutolo, F., Tuccinardi, T., & Chicca, A. (2019). Optimization of a benzoylpiperidine class identifies a highly potent and selective reversible monoacylglycerol lipase (MAGL) inhibitor. Journal of Medicinal Chemistry, 62(4), 1932–1958. https://doi.org/10.1021/acs.jmedchem.8b01483
  • Gribble, A. D., Dolle, R. E., Shaw, A., McNair, D., Novelli, R., Novelli, C. E., Slingsby, B. P., Shah, V. P., Tew, D., Saxty, B. A., Allen, M., Groot, P. H., Pearce, N., & Yates, J. (1996). ATP-Citrate Lyase as a target for hypolipidemic intervention. Design and synthesis of 2-substituted butanedioic acids as novel, potent inhibitors of the enzyme. Journal of Medicinal Chemistry, 39(18), 3569–3584. https://doi.org/10.1021/jm960167w
  • Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A., & Thompson, C. B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321. https://doi.org/10.1016/j.ccr.2005.09.008
  • Hoffmann, G. E., Andres, H., Weiss, L., Kreisel, C., & Sander, R. (1980). Lipogenesis in man: Properties and organ distribution of ATP citrate (pro-3S)-lyase. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 620(1), 151–158. https://doi.org/10.1016/0005-2760(80)90194-0 https://doi.org/10.1016/0005-2760(80)90194-0
  • Hu, J., Komakula, A., & Fraser, M. E. (2017). Binding of hydroxycitrate to human ATP-citrate lyase. Acta Crystallographica. Section D, Structural Biology, 73(Pt 8), 660–671. https://doi.org/10.1107/S2059798317009871
  • Jernigan, F. E., Hanai, J., Sukhatme, V. P., & Sun, L. (2017). Discovery of furan carboxylate derivatives as novel inhibitors of ATP-citrate lyase via virtual high-throughput screening. Bioorganic & Medicinal Chemistry Letters, 27(4), 929–935. https://doi.org/10.1016/j.bmcl.2017.01.001
  • Ki, S. W., Ishigami, K., Kitahara, T., Kasahara, K., Yoshida, M., & Horinouchi, S. (2000). Radicicol binds and inhibits mammalian ATP citrate lyase. The Journal of Biological Chemistry, 275(50), 39231–39236. https://doi.org/10.1074/jbc.M006192200
  • Kuo, C.-Y., & Ann, D. K. (2018). When fats commit crimes: Fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Communications (London, England)), 38(1), 47. https://doi.org/10.1186/s40880-018-0317-9
  • Lapillo, M., Salis, B., Palazzolo, S., Poli, G., Granchi, C., Minutolo, F., Rotondo, R., Caligiuri, I., Canzonieri, V., Tuccinardi, T., & Rizzolio, F. (2019). First-of-its-kind STARD3 inhibitor: In silico identification and biological evaluation as anticancer agent. ACS Medicinal Chemistry Letters, 10(4), 475–480. https://doi.org/10.1021/acsmedchemlett.8b00509
  • Li, J. J., Wang, H., Tino, J. A., Robl, J. A., Herpin, T. F., Lawrence, R. M., Biller, S., Jamil, H., Ponticiello, R., Chen, L., Chu, C-h., Flynn, N., Cheng, D., Zhao, R., Chen, B., Schnur, D., Obermeier, M. T., Sasseville, V., Padmanabha, R., Pike, K., & Harrity, T. (2007). 2-Hydroxy-N-arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorganic & Medicinal Chemistry Letters, 17(11), 3208–3211. https://doi.org/10.1016/j.bmcl.2007.03.017
  • Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews. Cancer, 7(10), 763–777. https://doi.org/10.1038/nrc2222
  • Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K., & Ishikawa, Y. (2008). ATP citrate lyase: Activation and therapeutic implications in non-small cell lung cancer. Cancer Research, 68(20), 8547–8554. https://doi.org/10.1158/0008-5472.CAN-08-1235
  • Pearce, N. J., Yates, J. W., Berkhout, T. A., Jackson, B., Tew, D., Boyd, H., Camilleri, P., Sweeney, P., Gribble, A. D., Shaw, A., & Groot, P. H. E. (1998). The role of ATP citrate-lyase in the metabolic regulation of plasma lipids Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochemical Journal, 334(1), 113–119. https://doi.org/10.1042/bj3340113
  • Pini, E., Poli, G., Tuccinardi, T., Chiarelli, L., Mori, M., Gelain, A., Costantino, L., Villa, S., Meneghetti, F., & Barlocco, D. (2018). New chromane-based derivatives as inhibitors of mycobacterium tuberculosis salicylate synthase (MbtI): Preliminary biological evaluation and molecular modeling studies. Molecules, 23(7), 1506. https://doi.org/10.3390/molecules23071506
  • Poli, G., Martinelli, A., & Tuccinardi, T. (2016). Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup2), 167–173. https://doi.org/10.1080/14756366.2016.1193736
  • Poli, G., Seidel, T., & Langer, T. (2018). Conformational sampling of small molecules with iCon: Performance assessment in comparison with OMEGA. Frontiers in Chemistry, 6, 229. https://doi.org/10.3389/fchem.2018.00229
  • Russo Spena, C., De Stefano, L., Poli, G., Granchi, C., El Boustani, M., Ecca, F., Grassi, G., Grassi, M., Canzonieri, V., Giordano, A., Tuccinardi, T., Caligiuri, I., & Rizzolio, F. (2019). Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. Journal of Cellular Physiology, 234(9), 15708–15716. https://doi.org/10.1002/jcp.28224
  • Suburu, J., & Chen, Y. Q. (2012). Lipids and prostate cancer. Prostaglandins & Other Lipid Mediators, 98(1–2), 1–10. https://doi.org/10.1016/j.prostaglandins.2012.03.003
  • Sun, T., Hayakawa, K., & Fraser, M. E. (2011). ADP-Mg2+ bound to the ATP-grasp domain of ATP-citrate lyase . Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 67(Pt 10), 1168–1167. https://doi.org/10.1107/S1744309111028363
  • Swinnen, J. V., Brusselmans, K., & Verhoeven, G. (2006). Increased lipogenesis in cancer cells: New players, novel targets. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 358–365. https://doi.org/10.1097/01.mco.0000232894.28674.30
  • Tuccinardi, T. (2009). Docking-based virtual screening: Recent developments. Combinatorial Chemistry & High Throughput Screening, 12(3), 303–314. https://doi.org/10.2174/138620709787581666
  • Tuccinardi, T., Poli, G., Corchia, I., Granchi, C., Lapillo, M., Macchia, M., Minutolo, F., Ortore, G., & Martinelli, A. (2016). A virtual screening study for lactate dehydrogenase 5 inhibitors by using a pharmacophore-based approach. Molecular Informatics, 35(8–9), 434–439. https://doi.org/10.1002/minf.201501026
  • Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., & Martinelli, A. (2014). Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. Journal of Chemical Information and Modeling, 54(10), 2980–2986. https://doi.org/10.1021/ci500424n
  • Verschueren, K. H. G., Blanchet, C., Felix, J., Dansercoer, A., De Vos, D., Bloch, Y., Van Beeumen, J., Svergun, D., Gutsche, I., Savvides, S. N., & Verstraete, K. (2019). Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature, 568(7753), 571–575. https://doi.org/10.1038/s41586-019-1095-5
  • Wang, Y., Wang, Y., Shen, L., Pang, Y., Qiao, Z., & Liu, P. (2012). Prognostic and therapeutic implications of increased ATP citrate lyase expression in human epithelial ovarian ial ovarian cancer. Oncology Reports, 27(4), 1156–1162. https://doi.org/10.3892/or.2012.1638
  • Wang, J., Ye, W., Yan, X., Guo, Q., Ma, Q., Lin, F., Huang, J., & Jin, J. (2019). Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia. Journal of Translational Medicine, 17(1), 149. https://doi.org/10.1186/s12967-019-1884-5
  • Wei, J., Leit, S., Kuai, J., Therrien, E., Rafi, S., Harwood, H. J., DeLaBarre, B., & Tong, L. (2019). An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature, 568(7753), 566–570. https://doi.org/10.1038/s41586-019-1094-6
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Yahagi, N., Shimano, H., Hasegawa, K., Ohashi, K., Matsuzaka, T., Najima, Y., Sekiya, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Nagai, R., Ishibashi, S., Kadowaki, T., Makuuchi, M., Ohnishi, S., Osuga, J-i., & Yamada, N. (2005). Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. European Journal of Cancer (Oxford, England : 1990), 41(9), 1316–1322. https://doi.org/10.1016/j.ejca.2004.12.037
  • Zadra, G., Photopoulos, C., & Loda, M. (2013). The fat side of prostate cancer. Biochimica et Biophysica Acta, 1831(10), 1518–1532. https://doi.org/10.1016/j.bbalip.2013.03.010
  • Zaidi, N., Swinnen, J. V., & Smans, K. (2012). ATP-citrate lyase: A key player in cancer metabolism. Cancer Research, 72(15), 3709–3714. https://doi.org/10.1158/0008-5472.CAN-11-4112
  • Zhao, S., Torres, A., Henry, R. A., Trefely, S., Wallace, M., Lee, J. V., Carrer, A., Sengupta, A., Campbell, S. L., Kuo, Y.-M., Frey, A. J., Meurs, N., Viola, J. M., Blair, I. A., Weljie, A. M., Metallo, C. M., Snyder, N. W., Andrews, A. J., & Wellen, K. E. (2016). ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Reports, 17(4), 1037–1052. https://doi.org/10.1016/j.celrep.2016.09.069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.