488
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Computational modeling of cyclic peptide inhibitor–MDM2/MDMX binding through global docking and Gaussian accelerated molecular dynamics simulations

ORCID Icon & ORCID Icon
Pages 4005-4014 | Received 24 Apr 2020, Accepted 18 May 2020, Published online: 08 Jun 2020

References

  • Berberich, S. J. (2014). Mdm2 and MdmX involvement in human cancer. In S. P. Deb & S. Deb (Eds.), Mutant p53 and MDM2 in cancer (pp. 263–280). Springer.
  • Bernal, F., Wade, M., Godes, M., Davis, T. N., Whitehead, D. G., Kung, A. L., Wahl, G. M., & Walensky, L. D. (2010). A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell, 18(5), 411–422. doi:10.1016/j.ccr.2010.10.024
  • Bhat, S., & Purisima, E. O. (2006). Molecular surface generation using a variable-radius solvent probe. Proteins, 62(1), 244–261. doi:10.1002/prot.20682
  • Cheok, C. F., Verma, C. S., Baselga, J., & Lane, D. P. (2011). Translating p53 into the clinic. Nature Reviews. Clinical Oncology, 8(1), 25–37. http://www.nature.com/nrclinonc/journal/v8/n1/suppinfo/nrclinonc.2010.174_S1.html doi:10.1038/nrclinonc.2010.174
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N [center-dot] log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. doi:10.1063/1.464397
  • Duffy, M. J., Synnott, N. C., McGowan, P. M., Crown, J., O'Connor, D., & Gallagher, W. M. (2014). p53 as a target for the treatment of cancer. Cancer Treatment Reviews, 40(10), 1153–1160. doi:10.1016/j.ctrv.2014.10.004
  • Fry, D. C., Graves, B., & Vassilev, L. T. (2005). Development of E3‐Substrate (MDM2‐p53)–binding inhibitors: Structural aspects. In J. D. Raymond (Ed.), Methods in enzymology (Vol. 399, pp. 622–633). Academic Press.
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. doi:10.1021/ct200909j
  • Garabedian, A., Bolufer, A., Leng, F., & Fernandez-Lima, F. (2018). Peptide Sequence influence on the conformational dynamics and DNA binding of the intrinsically disordered AT-Hook 3 peptide. Scientific Reports, 8(1), 10783. doi:10.1038/s41598-018-28956-z
  • Gasper, P. M., Fuglestad, B., Komives, E. A., Markwick, P. R. L., & McCammon, J. A. (2012). Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21216–21222. doi:10.1073/pnas.1218414109
  • Goldbach, L., Vermeulen, B. J. A., Caner, S., Liu, M., Tysoe, C., van Gijzel, L., Yoshisada, R., Trellet, M., van Ingen, H., Brayer, G. D., Bonvin, A. M. J. J., & Jongkees, S. A. K. (2019). Folding then binding vs folding through binding in macrocyclic peptide inhibitors of human pancreatic α-amylase. ACS Chemical Biology, 14(8), 1751–1759. doi:10.1021/acschembio.9b00290
  • Honda, R., Tanaka, H., & Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters, 420(1), 25–27. doi:10.1016/S0014-5793(97)01480-4
  • Isobe, M., Emanuel, B. S., Givol, D., Oren, M., & Croce, C. M. (1986). Localization of gene for human p53 tumour antigen to band 17p13. Nature, 320(6057), 84–85. doi:10.1038/320084a0
  • Iwazaki, T., Li, X., & Harada, K. (2005). Evolvability of the mode of peptide binding by an RNA. RNA (New York, N.Y.), 11(9), 1364–1373. doi:10.1261/rna.2560905
  • Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. doi:10.1002/prot.21117
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. doi:10.1038/nprot.2016.169
  • Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., & Kmiecik, S. (2015). CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Research, 43(W1), W419–W424. doi:10.1093/nar/gkv456
  • Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374–380. doi:10.1016/j.cpc.2012.09.022
  • Lee, H., Heo, L., Lee, M. S., & Seok, C. (2015). GalaxyPepDock: A protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Research, 43(W1), W431–W435. doi:10.1093/nar/gkv495
  • Li, C., Pazgier, M., Li, C., Yuan, W., Liu, M., Wei, G., Lu, W.-Y., & Lu, W. (2010). Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. Journal of Molecular Biology, 398(2), 200–213. doi:10.1016/j.jmb.2010.03.005
  • Lill, M. A., & Thompson, J. J. (2011). Solvent interaction energy calculations on molecular dynamics trajectories: Increasing the efficiency using systematic frame selection. Journal of Chemical Information and Modeling, 51(10), 2680–2689. doi:10.1021/ci200191m
  • London, N., Raveh, B., Cohen, E., Fathi, G., & Schueler-Furman, O. (2011). Rosetta FlexPepDock web server-high resolution modeling of peptide-protein interactions. Nucleic Acids Research, 39(Web Server issue), W249–W253. doi:10.1093/nar/gkr431
  • Macchiarulo, A., Giacche, N., Carotti, A., Moretti, F., & Pellicciari, R. (2011). Expanding the horizon of chemotherapeutic targets: From MDM2 to MDMX (MDM4). MedChemComm, 2(6), 455–465. doi:10.1039/c0md00238k
  • Marine, J.-C. (2011). Chapter 3 - MDM2 and MDMX in cancer and development. In A. D. Michael (Ed.), Current topics in developmental biology (Vol. 94, pp. 45–75). Academic Press.
  • Marine, J.-C W., Dyer, M. A., & Jochemsen, A. G. (2007). MDMX: From bench to bedside. Journal of Cell Science, 120(Pt 3), 371–378. doi:10.1242/jcs.03362
  • Markwick, P. R. L., Pierce, L. C. T., Goodin, D. B., & McCammon, J. A. (2011). Adaptive Accelerated Molecular Dynamics (Ad-AMD) revealing the molecular plasticity of P450cam. The Journal of Physical Chemistry Letters, 2(3), 158–164. doi:10.1021/jz101462n
  • McBride, O. W., Merry, D., & Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proceedings of the National Academy of Sciences of the United States of America, 83(1), 130–134. doi:10.1073/pnas.83.1.130
  • Miao, Y., Feher, V. A., & McCammon, J. A. (2015). Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation, 11(8), 3584–3595. doi:10.1021/acs.jctc.5b00436
  • Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R. C., & McCammon, J. A. (2014). Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. Journal of Chemical Theory and Computation, 10(7), 2677–2689. doi:10.1021/ct500090q
  • Momand, J., Zambetti, G. P., Olson, D. C., George, D., & Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69(7), 1237–1245. doi:10.1016/0092-8674(92)90644-R
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated Interaction Energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Journal of Chemical Information and Modeling, 47(1), 122–133. doi:10.1021/ci600406v
  • Noguchi, T., Oishi, S., Honda, K., Kondoh, Y., Saito, T., Kubo, T., Kaneda, M., Ohno, H., Osada, H., & Fujii, N. (2013). Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array: Identification of novel peptidic inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(13), 3802–3805. doi:10.1016/j.bmcl.2013.04.094
  • Obarska-Kosinska, A., Iacoangeli, A., Lepore, R., & Tramontano, A. (2016). PepComposer: Computational design of peptides binding to a given protein surface. Nucleic Acids Research, 44(W1), W522–W528. doi:10.1093/nar/gkw366
  • Otto, M., Süßmuth, R., Vuong, C., Jung, G., & Götz, F. (1999). Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Letters, 450(3), 257–262. doi:10.1016/S0014-5793(99)00514-1
  • Pazgier, M., Liu, M., Zou, G., Yuan, W., Li, C., Li, C., Li, J., Monbo, J., Zella, D., Tarasov, S. G., & Lu, W. (2009). Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4665–4670. doi:10.1073/pnas.0900947106
  • Perdih, A., Bren, U., & Solmajer, T. (2009). Binding free energy calculations of N-sulphonyl-glutamic acid inhibitors of MurD ligase. Journal of Molecular Modeling, 15(8), 983–996. doi:10.1007/s00894-009-0455-8
  • Petsalaki, E., & Russell, R. B. (2008). Peptide-mediated interactions in biological systems: New discoveries and applications. Current Opinion in Biotechnology, 19(4), 344–350. doi:10.1016/j.copbio.2008.06.004
  • Pierce, L. C. T., Salomon-Ferrer, R., Augusto F. de Oliveira, C., McCammon, J. A., & Walker, R. C. (2012). Routine access to millisecond time scale events with accelerated molecular dynamics. Journal of Chemical Theory and Computation, 8(9), 2997–3002. doi:10.1021/ct300284c
  • Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O., & Kozakov, D. (2017). ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics (Oxford, England), 33(20), 3299–3301. doi:10.1093/bioinformatics/btx216
  • Purisima, E. O. (1998). Fast summation boundary element method for calculating solvation free energies of macromolecules. Journal of Computational Chemistry, 19(13), 1494–1504. doi:10.1002/(SICI)1096-987X(199810)19:13 < 1494::AID-JCC6 > 3.0.CO;2-L
  • Purisima, E. O., & Nilar, S. H. (1995). A simple yet accurate boundary element method for continuum dielectric calculations. Journal of Computational Chemistry, 16(6), 681–689. doi:10.1002/jcc.540160604
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. doi:10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. doi:10.1021/ct400314y
  • Shangary, S., & Wang, S. (2009). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy. Annual Review of Pharmacology and Toxicology, 49(1), 223–241. doi:10.1146/annurev.pharmtox.48.113006.094723
  • Toledo, F., & Wahl, G. M. (2007). MDM2 and MDM4: p53 regulators as targets in anticancer therapy. The International Journal of Biochemistry & Cell Biology, 39(7–8), 1476–1482. doi:10.1016/j.biocel.2007.03.022
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. doi:10.1002/prot.25219
  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., & Liu, E. A. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science (New York, N.Y.), 303(5659), 844–848. doi:10.1126/science.1092472
  • Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310. doi:10.1038/35042675
  • Wade, M., & Wahl, G. M. (2009). Targeting Mdm2 and Mdmx in cancer therapy: Better living through medicinal chemistry? Molecular Cancer Research: MCR, 7(1), 1–11. doi:10.1158/1541-7786.mcr-08-0423
  • Wang, J., Alekseenko, A., Kozakov, D., & Miao, Y. (2019). Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Frontiers in Molecular Biosciences, 6(112), 112. doi:10.3389/fmolb.2019.00112
  • Wang, Y.-T., & Su, Z.-Y. (2011). Modelling and predicting the binding mechanics of HIV P1053-0.5β antibody complex. Molecular Simulation, 37(2), 164–171. doi:10.1080/08927022.2010.533274
  • Wang, Y., Markwick, P. R. L., de Oliveira, C. A. F., & McCammon, J. A. (2011). Enhanced lipid diffusion and mixing in accelerated molecular dynamics. Journal of Chemical Theory and Computation, 7(10), 3199–3207. doi:10.1021/ct200430c
  • Wendler, K., Thar, J., Zahn, S., & Kirchner, B. (2010). Estimating the hydrogen bond energy. The Journal of Physical Chemistry. A, 114(35), 9529–9536. doi:10.1021/jp103470e
  • Yang, C., Zhang, S., Bai, Z., Hou, S., Wu, D., Huang, J., & Zhou, P. (2016). A two-step binding mechanism for the self-binding peptide recognition of target domains. Molecular Biosystems, 12(4), 1201–1213. doi:10.1039/C5MB00800J
  • Zhang, Y., & Sanner, M. F. (2019). AutoDock CrankPep: Combining folding and docking to predict protein-peptide complexes. Bioinformatics (Oxford, England), 35(24), 5121–5127. doi:10.1093/bioinformatics/btz459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.