221
Views
11
CrossRef citations to date
0
Altmetric
Express Communication

Cell apoptosis induced by ciprofloxacin based Cu(II) complexes: cytotoxicity, SOD mimic and antibacterial studies

ORCID Icon, , , &
Pages 4555-4562 | Received 12 Apr 2020, Accepted 27 May 2020, Published online: 11 Jun 2020

References

  • Abdel-Rahman, L. H., Abu-Dief, A. M., Aboelez, M. O., & Abdel-Mawgoud, A. A. H. (2017). DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO (II), Cr (III), Mn (II) and Ni (II) mononuclear chelates encompassing quaridentate imine ligand. Journal of Photochemistry and Photobiology B: Biology, 170, 271–285. https://doi.org/10.1016/j.jphotobiol.2017.04.003
  • Abdel-Rahman, L. H., Abu-Dief, A. M., El-Khatib, R. M., & Abdel-Fatah, S. M. (2016). Some new nano-sized Fe (II), Cd (II) and Zn (II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorganic Chemistry, 69, 140–152. https://doi.org/10.1016/j.bioorg.2016.10.009
  • Abdel-Rahman, L. H., Abu-Dief, A. M., Moustafa, H., & Abdel-Mawgoud, A. A. H. (2020). Design and nonlinear optical properties (NLO) using DFT approach of new Cr (III), VO (II), and Ni (II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies. Arabian Journal of Chemistry, 13(1), 649–670. https://doi.org/10.1016/j.arabjc.2017.07.007
  • Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A., Abu-Dief, A. M., Ismael, M., & Seleem, A. A. (2014). Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron (II) bromosalicylidene amino acid chelates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 366–378. https://doi.org/10.1016/j.saa.2013.07.056
  • Abdel‐Rahman, L. H., Abu‐Dief, A. M., Basha, M., & Hassan Abdel‐Mawgoud, A. A. (2017). Three novel Ni (II), VO (II) and Cr (III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity. Applied Organometallic Chemistry, 31(11), e3750. https://doi.org/10.1002/aoc.3750
  • Abdel‐Rahman, L. H., Abu‐Dief, A. M., Shehata, M. R., Atlam, F. M., & Abdel‐Mawgoud, A. A. H. (2019). Some new Ag (I), VO (II) and Pd (II) chelates incorporating tridentate imine ligand: Design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Applied Organometallic Chemistry, 33(4), e4699. https://doi.org/10.1002/aoc.4699
  • Abdel‐Rahman, L. H., Adam, M. S. S., Abu‐Dief, A. M., Moustafa, H., Basha, M. T., Aboraia, A. S., Al‐Farhan, B. S., & Ahmed, H. E. S. (2018). Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Applied Organometallic Chemistry, 32(12), e4527. https://doi.org/10.1002/aoc.4527
  • Abu-Dief, A. M., Abdel-Rahman, L. H., Abdelhamid, A. A., Marzouk, A. A., Shehata, M. R., Bakheet, M. A., Almaghrabi, O. A., & Nafady, A. (2020). Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 228, 117700https://doi.org/10.1016/j.saa.2019.117700
  • Abu‐Dief, A. M., Abdel‐Rahman, L. H., & Abdel‐Mawgoud, A. A. H. (2020). A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal‐azomethine chelates incorporating Ag (I), Pd (II) and VO (II) cations: Probing the aspects of DNA interaction. Applied Organometallic Chemistry, 34(2), e5373. https://doi.org/10.1002/aoc.5373
  • Abyaneh, F. S. S., Moghadam, M. E., Divsalar, A., Ajloo, D., & Sadr, M. H. (2018). Improving of anticancer activity and solubility of cisplatin by methylglycine and methyl amine ligands against human breast adenocarcinoma cell line. Applied Biochemistry and Biotechnology, 186(2), 271–291. https://doi.org/10.1007/s12010-018-2715-5
  • Besold, A. N., Culbertson, E. M., & Culotta, V. C. (2016). The Yin and Yang of copper during infection. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 21(2), 137–144. https://doi.org/10.1007/s00775-016-1335-1
  • Chan, F. K.-M., Moriwaki, K., & De Rosa, M. J. (2013). Detection of necrosis by release of lactate dehydrogenase activity. In Immune Homeostasis (pp. 65–70). Springer.
  • Deacon, G., & Phillips, R. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews, 33(3), 227–250. https://doi.org/10.1016/S0010-8545(00)80455-5
  • Guo, Z., & Sadler, P. J. (1999). Metals in medicine. Angewandte Chemie International Edition, 38(11), 1512–1531. https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y
  • Hu, J., Liao, C., Guo, Y., Yang, F., & Sang, W. (2017). Copper (II) complexes inducing apoptosis in cancer cells, and demonstrating DNA and HSA interactions. Polyhedron, 132, 28–38. https://doi.org/10.1016/j.poly.2017.04.018
  • Iakovidis, I., Delimaris, I., & Piperakis, S. M. (2011). Copper and its complexes in medicine: A biochemical approach. Molecular Biology International, 2011, 594529. https://doi.org/10.4061/2011/594529
  • Jitsukawa, K., Harata, M., Arii, H., Sakurai, H., & Masuda, H. (2001). SOD activities of the copper complexes with tripodal polypyridylamine ligands having a hydrogen bonding site. Inorganica Chimica Acta, 324(1-2), 108–116. https://doi.org/10.1016/S0020-1693(01)00567-9
  • Jung, Y., & Lippard, S. J. (2007). Direct cellular responses to platinum-induced DNA damage. Chemical Reviews, 107(5), 1387–1407. https://doi.org/10.1021/cr068207j
  • Kowalski, S., Wyrzykowski, D., Hac, S., Rychlowski, M., Radomski, M. W., & Inkielewicz-Stepniak, I. (2019). New oxidovanadium (IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. International Journal of Molecular Sciences, 20(2), 261. https://doi.org/10.3390/ijms20020261
  • Lewan, L., Andersson, M., & Morales-Gomez, P. (1992). Use of Artemia salina in toxicity testing. Alternatives to Laboratory Animals: ATLA, 20(2), 297–301.
  • Liang, H., Xu, Y., Zhang, Q., Yang, Y., Mou, Y., Gao, Y., Chen, R., Chen, C., & Dai, P. (2019). MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 725–736. https://doi.org/10.1080/21691401.2019.1569530
  • Linder, M. C. (2013). Biochemistry of copper. Springer Science & Business Media.
  • Mahendiran, D., Amuthakala, S., Bhuvanesh, N. S., Kumar, R. S., & Rahiman, A. K. (2018). Copper complexes as prospective anticancer agents: In vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Advances, 8(30), 16973–16990. https://doi.org/10.1039/C8RA00954F
  • Mazumder, U. K., Gupta, M., Karki, S. S., Bhattacharya, S., Rathinasamy, S., & Thangavel, S. (2004). Synthesis, anticancer and antibacterial activity of some novel mononuclear Ru (II) complexes. Chemical & Pharmaceutical Bulletin, 52(2), 178–185. https://doi.org/10.1248/cpb.52.178
  • Medina, J. J. M., Naso, L. G., Pérez, A. L., Rizzi, A., Okulik, N. B., Ferrer, E. G., & Williams, P. A. (2017). Apigenin oxidovanadium (IV) cation interactions. Synthesis, spectral, bovine serum albumin binding, antioxidant and anticancer studies. Journal of Photochemistry and Photobiology A: Chemistry, 344, 84–100. https://doi.org/10.1016/j.jphotochem.2017.05.007
  • Mohamad, A. D. M., Abualreish, M., & Abu-Dief, A. M. (2019). Antimicrobial and anticancer activities of cobalt (III)-hydrazone complexes: Solubilities and chemical potentials of transfer in different organic co-solvent-water mixtures. Journal of Molecular Liquids, 290, 111162. https://doi.org/10.1016/j.molliq.2019.111162
  • Nehru, S., Veeralakshmi, S., Kalaiselvam, S., Subin David, S., Sandhya, J., & Arunachalam, S. (2020). DNA binding, antibacterial, hemolytic and anticancer studies of some fluorescent emissive surfactant-ruthenium (II) complexes. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1747547
  • Neu, H. (1987). Ciprofloxacin: An overview and prospective appraisal. The American Journal of Medicine, 82(4A), 395–404.
  • Nivière, V., & Fontecave, M. (2004). Discovery of superoxide reductase: An historical perspective. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 9(2), 119–123. https://doi.org/10.1007/s00775-003-0519-7
  • Patel, M. N., Bhatt, B. S., & Dosi, P. A. (2012). Thermal, spectral, and thermodynamic studies for evaluation of calf thymus DNA interaction activity of some copper (II) complexes. Journal of Thermal Analysis and Calorimetry, 107(1), 55–64. https://doi.org/10.1007/s10973-011-1554-1
  • Patel, M. N., Bhatt, B. S., Dosi, P. A., Amaravady, N. V., & Movaliya, H. V. (2012). Synthesis, spectral investigation and biological interphase of drug‐based cytotoxic square pyramidal coordination compounds. Applied Organometallic Chemistry, 26(5), 217–224. https://doi.org/10.1002/aoc.2841
  • Patel, N. J., Bhatt, B. S., & Patel, M. N. (2019). Heteroleptic N, N-donor pyrazole based Pt (II) and Pd (II) complexes: DNA binding, molecular docking and cytotoxicity studies. Inorganica Chimica Acta, 498, 119130. https://doi.org/10.1016/j.ica.2019.119130
  • Patel, R., Singh, N., Shukla, K., Gundla, V., & Chauhan, U. (2006). Synthesis, characterization and biological activity of ternary copper (II) complexes containing polypyridyl ligands. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(1), 21–26. https://doi.org/10.1016/j.saa.2005.04.030
  • Ramadevi, P., Singh, R., Jana, S. S., Devkar, R., & Chakraborty, D. (2015). Ruthenium complexes of ferrocene mannich bases: DNA/BSA interactions and cytotoxicity against A549 cell line. Journal of Photochemistry and Photobiology A: Chemistry, 305, 1–10. https://doi.org/10.1016/j.jphotochem.2015.02.010
  • Sakthikumar, K., Dhaveethu Raja, J., Vijay Solomon, R., & Sankarganesh, M. (2019). Density functional theory molecular modelling, DNA interactions, antioxidant, antimicrobial, anticancer and biothermodynamic studies of bioactive water soluble mixed ligand complexes. Journal of Biomolecular Structure & Dynamics, 37(10), 2498–2514. https://doi.org/10.1080/07391102.2018.1492970
  • Sankarganesh, M., Vijay Solomon, R., & Dhaveethu Raja, J. (2020). Platinum complex with pyrimidine-and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1727364
  • Shahraki, S., Shiri, F., Heidari Majd, M., & Dahmardeh, S. (2019). Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. Journal of Biomolecular Structure & Dynamics, 37(8), 2072–2085. https://doi.org/10.1080/07391102.2018.1476266
  • Shiekhzadeh, A., Sohrabi, N., Moghadam, M. E., & Oftadeh, M. (2020). Kinetic and thermodynamic investigation of human serum albumin interaction with anticancer glycine derivative of platinum complex by using spectroscopic methods and molecular docking. Applied Biochemistry and Biotechnology, 190(2), 506–528. https://doi.org/10.1007/s12010-019-03078-y
  • Tadele, K. T., & Tsega, T. W. (2019). Schiff bases and their metal complexes as potential anticancer candidates: A review of recent works. Anti-Cancer Agents in Medicinal Chemistry, 19(15), 1786–1795. https://doi.org/10.2174/1871520619666190227171716
  • Thakor, K. P., Lunagariya, M. V., Bhatt, B. S., & Patel, M. N. (2018). Synthesis, characterization and biological applications of some substituted pyrazoline based palladium (II) compounds. Applied Organometallic Chemistry, 32(11), e4523. https://doi.org/10.1002/aoc.4523
  • Thompson, K. H., & Orvig, C. (2006). Metal complexes in medicinal chemistry: New vistas and challenges in drug design. Dalton Transactions, 2006(6), 761–764. https://doi.org/10.1039/B513476E
  • Verma, M., Pandeya, S. N., Singh, K. N., & Stables, J. P. (2004). Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharmaceutica (Zagreb, Croatia), 54(1), 49–56.
  • Vidhyapriya, P., Divya, D., Bala, M., & Sakthivel, N. (2018). Photoactivated [Mn(CO)3Br(μ-bpcpd)]2 induces apoptosis in cancer cells via intrinsic pathway. Journal of Photochemistry and Photobiology. B, Biology, 188, 28–41. https://doi.org/10.1016/j.jphotobiol.2018.08.021
  • Waghela, B. N., Sharma, A., Dhumale, S., Pandey, S. M., & Pathak, C. (2015). Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PloS One, 10(2), e0117526. https://doi.org/10.1371/journal.pone.0117526
  • Whitfield, J. F. (2009). Calcium, calcium-sensing receptor and colon cancer. Cancer Letters, 275(1), 9–16. https://doi.org/10.1016/j.canlet.2008.07.001
  • Zhao, J., Wen, Y., Zhang, W., Zhao, D., Fan, A., Zhang, Y., Deng, S., Wang, X., Liu, Q., Lu, Y., Wang, Z., Gou, S., & Chen, X. (2014). Investigation on pharmacokinetics, tissue distribution and excretion of a novel platinum anticancer agent in rats by inductively coupled plasma mass spectrometry (ICP-MS). Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 44(8), 757–762. https://doi.org/10.3109/00498254.2014.889333
  • Zhi, S., Yu, H., Mao, R., Hu, J., Song, W., & Zhang, J. (2017). Mitochondrial and nuclear DNA dual damage induced by 2-(2′-quinolyl) benzimidazole copper complexes with potential anticancer activity. RSC Advances, 7(81), 51162–51174. https://doi.org/10.1039/C7RA09102H

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.