5,847
Views
55
CrossRef citations to date
0
Altmetric
Research Articles

Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 4686-4700 | Received 15 May 2020, Accepted 03 Jun 2020, Published online: 18 Jun 2020

References

  • Adeoye, A. O., Oso, B. J., Olaoye, I. F., Tijjani, H., & Adebayo, A. I. (2020). Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1765876.
  • Baig, M. H., Sudhakar, D. R., Kalaiarasan, P., Subbarao, N., Wadhawa, G., Lohani, M., Khan, M. K., & Khan, A. U. (2014). Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS One, 9(12), e112456. https://doi.org/10.1371/journal.pone.0112456
  • Baker, D. (1998). Pyran-chromenone compounds, their synthesis and anti-HIV activity (United States Patent 5,843,990). The University of Tennessee Research Corporation, Knoxville.
  • Belouzard, S., Chu, V. C., & Whittaker, G. R. (2009). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5871–5876. https://doi.org/10.1073/pnas.0809524106
  • Bhardwaj, K., Palaninathan, S., Alcantara, J. M., Yi, L. L., Guarino, L., Sacchettini, J. C., & Kao, C. C. (2008). Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15. Journal of Biological Chemistry, 283(6), 3655–3664. https://doi.org/10.1074/jbc.M708375200
  • Bhowmick, S., Chorge, R. D., Jangam, C. S., Bharatrao, L. D., Patil, P. C., Chikhale, R. V., & Islam, M. A. (2019). Identification of potential cruzain inhibitors using de novo design, molecular docking and dynamics simulations studies. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2019.1664334
  • Bode, A. M., & Dong, Z. (2015). Chemopreventive effects of licorice and its components. Current Pharmacology Reports, 1(1), 60–71. https://doi.org/10.1007/s40495-014-0015-5
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Cheng, F., Desai, R. J., Handy, D. E., Wang, R., Schneeweiss, S., Barabási, A. L., & Loscalzo, J. (2018). Network-based approach to prediction and population-based validation of in silico drug repurposing. Nature Communications, 9(1), 2691. https://doi.org/10.1038/s41467-018-05116-5
  • Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374), 2045–2046. https://doi.org/10.1016/S0140-6736(03)13615-X
  • Cotten, M., Watson, S. J., Kellam, P., Al-Rabeeah, A. A., Makhdoom, H. Q., Assiri, A., Al-Tawfiq, J. A., Alhakeem, R. F., Madani, H., AlRabiah, F. A., Al Hajjar, S., Al-Nassir, W. N., Albarrak, A., Flemban, H., Balkhy, H. H., Alsubaie, S., Palser, A. L., Gall, A., Bashford-Rogers, R., … Memish, Z. A. (2013). Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study. Lancet (London, England), 382(9909), 1993–2002. https://doi.org/10.1016/S0140-6736(13)61887-5
  • Curreli, F., Friedman-Kien, A. E., & Flore, O. (2005). Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. The Journal of Clinical Investigation, 115(3), 642–652. https://doi.org/10.1172/JCI23334
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • De Clercq, E. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20(5), 323–349. https://doi.org/10.1002/1098-1128(200009)20:5<323::AID-MED1>3.0.CO;2-A
  • Elfiky, A. A. (2020a). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1761882.
  • Elfiky, A. A. (2020b). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1761881.
  • Grienke, U., Braun, H., Seidel, N., Kirchmair, J., Richter, M., Krumbholz, A., von Grafenstein, S., Liedl, K. R., Schmidtke, M., & Rollinger, J. M. (2014). Computer-guided approach to access the anti-influenza activity of licorice constituents. Journal of Natural Products, 77(3), 563–570. https://doi.org/10.1021/np400817j
  • Grienke, U., Schmidtke, M., Kirchmair, J., Pfarr, K., Wutzler, P., Dürrwald, R., Wolber, G., Liedl, K. R., Stuppner, H., & Rollinger, J. M. (2010). Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. Journal of Medicinal Chemistry, 53(2), 778–786. https://doi.org/10.1021/jm901440f
  • Hung, I. F., Lung, K. C., Tso, E. Y., Liu, R., Chung, T. W., Chu, M. Y., Ng, Y. Y., Lo, J., Chan, J., Tam, A. R., Shum, H. P., Chan, V., Wu, A. K., Sin, K. M., Leung, W. S., Law, W. L., Lung, D. C., Sin, S., Yeung, P., Yip, C. C., … Yuen, K. Y. (2020). Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet, 395(10238), 1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4.
  • Islam, M. A., & Pillay, T. S. (2019). Pharmacoinformatics-based identification of chemically active molecules against Ebola virus. Journal of Biomolecular Structure & Dynamics, 37(15), 4104–4119. https://doi.org/10.1080/07391102.2018.1544509
  • Islam, M. A., & Pillay, T. S. (2020). Identification of promising anti-DNA gyrase antibacterial compounds using de novo design, molecular docking and molecular dynamics studies. Journal of Biomolecular Structure & Dynamics, 38(6), 1798–1809. https://doi.org/10.1080/07391102.2019.1617785
  • Jiang, M., Zhao, S., Yan, S., Li, X., He, X., Wei, X., Song, Q., Li, R., Fu, C., Zhang, J., & Zhang, Z. (2020). An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. Journal of Ethnopharmacology, 249, 112439. https://doi.org/10.1016/j.jep.2019.112439
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1760137.
  • Kandeel, M., & Al-Nazawi, M. (2020). Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sciences, 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627
  • Kang, S., Peng, W., Zhu, Y., Lu, S., Zhou, M., Lin, W., Wu, W., Huang, S., Jiang, L., Luo, X., & Deng, M. (2020). Recent progress in understanding 2019 novel Coronavirus associated with human respiratory disease: Detection, mechanism and treatment. International Journal of Antimicrobial Agents, 55(5), 105950. https://doi.org/10.1016/j.ijantimicag.2020.105950
  • Kim, A., & Ma, J. Y. (2018). Isoliquiritin apioside suppresses in vitro invasiveness and angiogenesis of cancer cells and endothelial cells. Frontiers in Pharmacology, 9, 1455. https://doi.org/10.3389/fphar.2018.01455
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kim, Y., Jedrzejczak, R., Maltseva, N., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). The 1.9 A crystal structure of NSP15 endoribonuclease from SARS CoV-2 in the complex with a citrate. Protein Science, 1–11. https://doi.org/10.1101/2020.03.02.968388.
  • Lim, J., Jeon, S., Shin, H. Y., Kim, M. J., Seong, Y. M., Lee, W. J., Choe, K. W., Kang, Y. M., Lee, B., & Park, S. J. (2020). Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. Journal of Korean Medical Science, 35(6), e79. https://doi.org/10.3346/jkms.2020.35.e79
  • Liu, Y., Hong, Z., Qian, J., Wang, Y., & Wang, S. (2019). Protective effect of Jie-Geng-Tang against Staphylococcus aureus induced acute lung injury in mice and discovery of its effective constituents. Journal of Ethnopharmacology, 243, 112076. https://doi.org/10.1016/j.jep.2019.112076
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Okimoto, N., Futatsugi, N., Fuji, H., Suenaga, A., Morimoto, G., Yanai, R., Ohno, Y., Narumi, T., & Taiji, M. (2009). High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Computational Biology, 5(10), e1000528. https://doi.org/10.1371/journal.pcbi.1000528
  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620. https://doi.org/10.1038/s41467-020-15562-9
  • Pan, Y., Guan, H., Zhou, S., Wang, Y., Li, Q., Zhu, T., Hu, Q., & Xia, L. (2020). Initial CT findings and temporal changes in patients with the novel Coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China. European Radiology, 30, 3306–3309. https://doi.org/10.1007/s00330-020-06731-x.
  • Parida, P., Bhowmick, S., Saha, A., & Islam, M. A. (2020). Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1720819.
  • Pillaiyar, T., Meenakshisundaram, S., & Manickam, M. (2020). Recent discovery and development of inhibitors targeting coronaviruses. Drug Discovery Today, 25(4), 30041–30046. https://doi.org/10.1016/j.drudis.2020.01.015.
  • Pillaiyar, T., Meenakshisundaram, S., Manickam, M., & Sankaranarayanan, M. (2020). A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. European Journal of Medicinal Chemistry, 195, 112275. https://doi.org/10.1016/j.ejmech.2020.112275
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Prajapati, S. M., & Patel, B. R. (2015). A comparative clinical study of Jethimala (Taverniera nummularia Baker.) and Yashtimadhu (Glycyrrhiza glabra Linn.) in the management of Amlapitta. Ayu, 36(2), 157–162. https://doi.org/10.4103/0974-8520.175551
  • Ricagno, S., Egloff, M. P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Ziebuhr, J., & Canard, B. (2006). Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11892–11897. https://doi.org/10.1073/pnas.0601708103
  • Sabouri Ghannad, M., Mohammadi, A., Safiallahy, S., Faradmal, J., Azizi, M., & Ahmadvand, Z. (2014). The effect of aqueous extract of Glycyrrhiza glabra on herpes simplex virus 1. Jundishapur Journal of Microbiology, 7(7), e11616. https://doi.org/10.5812/jjm.11616
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Serafin, M. B., Bottega, A., Foletto, V. S., da Rosa, T. F., Hörner, A., & Hörner, R. (2020). Drug repositioning an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents, 9, 105969. https://doi.org/10.1016/j.ijantimicag.2020.105969
  • Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., & Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11(1), 222. https://doi.org/10.1038/s41467-019-13940-6
  • Singhal, T. (2020). A review of Coronavirus disease-2019 (COVID-19). The Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1762741.
  • Snijder, E. J., Decroly, E., & Ziebuhr, J. (2016). The nonstructural proteins directing Coronavirus RNA synthesis and processing. Advances in Virus Research, 96, 59–126. https://doi.org/10.1016/bs.aivir.2016.08.008
  • Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections, 9(1), 382–385. https://doi.org/10.1080/22221751.2020.1729069
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel Coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS Coronavirus. Journal of Virology, 94(7), 20. https://doi.org/10.1128/JVI.00127-20
  • Wang, J., Chen, X., Wang, W., Zhang, Y., Yang, Z., Jin, Y., Ge, H. M., Li, E., & Yang, G. (2013). Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. Against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. Journal of Ethnopharmacology, 147(1), 114–121. https://doi.org/10.1016/j.jep.2013.02.017
  • World Health Organization. (2020). Coronavirus Disease (COVID-2019). Retrieved May 15, 2020, from https://covid19.who.int/.
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 1–23. https://doi.org/10.1016/j.apsb.2020.02.008.
  • Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., & Liu, Y. (2017). The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology, 55(1), 5–18. https://doi.org/10.1080/13880209.2016.1225775
  • Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 7, 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel Coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.