341
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of natural fungicide from Melia azedarach against isocitrate lyase of Fusarium graminearum

, , , & ORCID Icon
Pages 4816-4834 | Received 16 Feb 2020, Accepted 05 Jun 2020, Published online: 22 Jun 2020

References

  • Akacha, M., Lahbib, K., Remadi, M. D., & Ghanem, N. (2016). Antibacterial, antifungal and anti-inflammatory activities of Melia azedarach ethanolic leaves extract. Bangladesh Journal of Pharmacology, 11(3), 666–674. (https://doi.org/10.3329/bjp.v11i3.27000
  • Al-Marzoqi, A. H., Hameed, I. H., & Idan, S. A. (2015). Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). African Journal of Biotechnology, 14(40), 2812–2830.
  • Bakheet, T. M., & Doig, A. J. (2010). Properties and identification of antibiotic drug targets. BMC Bioinformatics, 11, 195. https://doi.org/10.1186/1471-2105-11-195
  • Balavignesh, V., Srinivasan, E., RameshBabu, N. G., & Saravanan, N. (2013). Molecular docking study ON NS5B polymerase of hepatitis c virus by screening of volatile compounds from Acacia concinna and ADMET prediction. International Journal of Pharmaceutical Life Sciences, 4(4), 2548–2558.
  • Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker‐assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breeding, 128(1), 1–26. https://doi.org/10.1111/j.1439-0523.2008.01550.x
  • Canli, K., Altuner, E. M., & Akata, I. (2015). Antimicrobial screening of Mnium stellar. Bangladesh Journal of Pharmacology, 10(2), 321–325. (https://doi.org/10.3329/bjp.v10i2.22463
  • Carpinella, M. C., Defago, M. T., Valladares, G., & Palacios, S. M. (2003). Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. Journal of Agricultural and Food Chemistry, 51(2), 369–374. https://doi.org/10.1021/jf025811w
  • Carpinella, M. C., Ferrayoli, C. G., & Palacios, S. M. (2005). Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. Journal of Agricultural and Food Chemistry, 53(8), 2922–2927. https://doi.org/10.1021/jf0482461
  • Carpinella, M. C., Giorda, L. M., Ferrayoli, C. G., & Palacios, S. M. (2003). Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components. Journal of Agricultural and Food Chemistry, 51(9), 2506–2511. https://doi.org/10.1021/jf026083f
  • Cheah, H. L., Lim, V., & Sandai, D. (2014). Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLOS One, 9(4), e95951. https://doi.org/10.1371/journal.pone.0095951
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chunlan, Y., Xiaoling, W., & Desuo, Y. (2006). Antimicrobial and pesticidal activity of fraxinellone from Dictamnus dasycarpus. Chemical Journal on Internet, 8(1), 33–38.
  • Dissanayake, M. L. M. C. (2014). Inhibitory effect of selected medicinal plant extracts on phytopathogenic fungus Fusarium oxysporum (Nectriaceae) Schlecht. Emend. Snyder and Hansen. Annual Research & Review in Biology, 4(1), 133–142. https://doi.org/10.9734/ARRB/2014/5777
  • Dunn, M. F., Ramirez-Trujillo, J. A., & Hernandez-Lucas, I. (2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology (Reading, England), 155(Pt 10), 3166–3175. https://doi.org/10.1099/mic.0.030858-0
  • Guengerich, F. P. (2003). Cytochromes P450, drugs, and diseases. Molecular Interventions, 3(4), 194–204. https://doi.org/10.1124/mi.3.4.194
  • Habib, R., Mohyuddin, A., Khan, Z., & Mahmood, T. (2017). Analysis of non-polar chemical profile of Melia azedarach L. Scientific Inquiry Review, 1(1), 1–7.
  • Iqbal, Z., Naqvi, S. A. H., Perveen, R., Umer, U. U. D., Malik, O., & Rehman, A. U. (2014). Determination of antibacterial activity of various broad spectrum antibiotics against Xanthomonas oryzae pv. oryzae, a cause of bacterial leaf blight of rice. International Journal of Microbiology and Mycology, 2(3), 12–19.
  • Jabeen, K., Javaid, A., Ahmad, E., & Athar, M. (2011). Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Natural Product Research, 25(3), 264–276. https://doi.org/10.1080/14786411003754298
  • Javaid, A., & Rehman, H. A. (2011). Antifungal activity of leaf extracts of some medicinal trees against Macrophomina phaseolina. Journal of Medicinal Plant Research, 5(13), 2868–2872.
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kumar, R., Singh, R., Meera, P. S., & Kalidhar, S. B. (2003). Chemical components and insecticidal PROPERTIES of baka/n (Melia azedarach L.) – A Review. Agricultural Reviews, 24(2), 101–105.
  • Kumari, S., Idrees, D., Mishra, C. B., Prakash, A., Wahiduzzaman., & Ahmad, F. (2016). Design and synthesis of a novel class of carbonic anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl)urea. Journal of Molecular Graphics and Modelling, 64, 101–109. https://doi.org/10.1016/j.jmgm.2016.01.006
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, S. K., Chang, G. S., Lee, I. H., Chung, J. E., & Sung, K. Y., K. T., N. (2004). The PreADME: PC-based program for batch prediction of ADME properties. EuroQSAR 2004.
  • Leeson, P. (2012). Drug discovery: Chemical beauty contest. Nature, 481(7382), 455–456. https://doi.org/10.1038/481455a
  • Lee, H.-S., Yoon, K.-M., Han, Y.-R., Lee, K. J., Chung, S.-C., Kim, T.-I., Lee, S.-H., Shin, J., & Oh, K.-B. (2009). 5-Hydroxyindole-type alkaloids, as Candida albicans isocitrate lyase inhibitors, from the tropical sponge Hyrtios sp. Bioorganic & Medicinal Chemistry Letters, 19(4), 1051–1053. https://doi.org/10.1016/j.bmcl.2009.01.017
  • Leonard, K. J., & Bushnell, W. R. (2003). Fusarium head blight of wheat and barley. The American Phytopathological Society.
  • Lorenz, M. C., & Fink, G. R. (2002). Life and death in a macrophage: Role of the glyoxylate cycle in virulence. Eukaryotic Cell, 1(5), 657–662. https://doi.org/10.1128/EC.1.5.657-662.2002
  • Magan, N., Aldred, D., Mylona, K., & Lambert, R. J. (2010). Limiting mycotoxins in stored wheat. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 27(5), 644–650. https://doi.org/10.1080/19440040903514523
  • Nahak, G., & Sahu, R. K. (2014). Bioefficacy of leaf extract of neem (Azadirachta indica A. Juss) on growth parameters, wilt and leafspot diseases of brinjal. Research Journal of Medicinal Plant, 8(6), 269–276. https://doi.org/10.3923/rjmp.2014.269.276
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Park, Y., Cho, Y., Lee, Y. H., Lee, Y. W., & Rhee, S. (2016). Crystal structure and functional analysis of isocitrate lyases from Magnaporthe oryzae and Fusarium graminearum. Journal of Structural Biology, 194(3), 395–403. https://doi.org/10.1016/j.jsb.2016.03.019
  • Park, H. W., Ma, Z., Zhu, H., Jiang, S., Robinson, R. C., & Endow, S. A. (2017). Structural basis of small molecule ATPase inhibition of a human mitotic kinesin motor protein. Scientific Reports, 7(1), 15121. https://doi.org/10.1038/s41598-017-14754-6
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England)), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Puvan Arul Arumugam, I., Mohamad, R., & Salim, M. Z. (2015). Antifungal effect of Malaysian neem leaf extract on selected fungal species causing otomycosis in in-vitro culture medium. Malaysian Journal of Medicine and Health Sciences, 11(2), 69–84.
  • Qureshi, H., Arshad, M., Akram, A., Raja, N. I., Fatima, S., & Amjad, M. S. (2016). Ethnopharmacological and phytochemical account of paradise tree. Pure and Applied Biology, 5(1), 5–14. https://doi.org/10.19045/bspab.2016.50002
  • Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43(2), 603–615. https://doi.org/10.1007/s00726-011-1108-7
  • Roy, S., Chakraborty, H. J., Kumar, V., Behera, B. K., Rana, R. S., & Babu, G. (2018). In silico structural studies and molecular docking analysis of Delta6-desaturase in HUFA biosynthetic pathway. Animal Biotechnology, 29(3), 161–173. https://doi.org/10.1080/10495398.2017.1332639
  • Sharma, D., & Paul, Y. (2013). Preliminary and pharmacological profile of Melia azedarach L.: An overview. Journal of Applied Pharmaceutical Science, 3(12), 133–138.
  • Shukla, R., Chetri, P. B., Sonkar, A., Pakharukova, M. Y., Mordvinov, V. A., & Tripathi, T. (2018). Identification of novel natural inhibitors of Opisthorchis felineus cytochrome P450 using structure-based screening and molecular dynamic simulation. Journal of Biomolecular Structure & Dynamics, 36(13), 3541–3556. https://doi.org/10.1080/07391102.2017.1392897
  • Shukla, R., Shukla, H., Sonkar, A., Pandey, T., & Tripathi, T. (2018). Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. Journal of Biomolecular Structure & Dynamics, 36(8), 2045–2057. https://doi.org/10.1080/07391102.2017.1341337
  • Shukla, R., Shukla, H., & Tripathi, T. (2018). Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis (Edinburgh, Scotland)), 108, 143–150. https://doi.org/10.1016/j.tube.2017.11.013
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., & Shim, J. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, R., Lai, L., & Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16(1), 11–26. https://doi.org/10.1023/a:1016357811882

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.