160
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation on the effects of pharmaceutical polymers on the structure and dynamics of interleukin2 in heat stress

, , , ORCID Icon, &
Pages 4536-4546 | Received 19 Feb 2020, Accepted 31 May 2020, Published online: 24 Jun 2020

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amadei, A., Ceruso, M. A., & Di Nola, A. (1999). On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Structure, Function, and Genetics, 36(4), 419–424. https://doi.org/10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO;2-U
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Ansari, M., Moradi, S., & Shahlaei, M. (2018). A molecular dynamics simulation study on the mechanism of loading of gemcitabine and camptothecin in poly lactic-co-glycolic acid as a nano drug delivery system. Journal of Molecular Liquids, 269, 110–118. https://doi.org/10.1016/j.molliq.2018.08.032
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Springer.
  • Bohacek, R. S., McMartin, C., & Guida, W. C. (1996). The art and practice of structure‐based drug design: A molecular modeling perspective. Medicinal Research Reviews, 16(1), 3–50. https://doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
  • Brocker, C., Thompson, D., Matsumoto, A., Nebert, D. W., & Vasiliou, V. (2010). Evolutionary divergence and functions of the human interleukin (IL) gene family. Human Genomics, 5(1), 30–55. https://doi.org/10.1186/1479-7364-5-1-30
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101https://doi.org/10.1063/1.2408420
  • Dai, C., Wang, B., & Zhao, H. (2005). Microencapsulation peptide and protein drugs delivery system. Colloids and Surfaces B, Biointerfaces, 41(2-3), 117–120. https://doi.org/10.1016/j.colsurfb.2004.10.032
  • Daniel, R. M., & Cowan, D. A. (2000). Biomolecular stability and life at high temperatures. Cellular and Molecular Life Sciences: CMLS, 57(2), 250–264. https://doi.org/10.1007/PL00000688
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: a method for determining the essential dynamics of proteins. In Livesay, D. (Ed.), Protein dynamics (pp. 193–226). Springer.
  • Dinarello, C. A. (1984). Interleukin-1. Reviews of Infectious Diseases, 6(1), 51–95. https://doi.org/10.1093/clinids/6.1.51
  • Dinarello, C. A. (1988). Biology of interleukin 1. FASEB Journal, 2(2), 108–115. https://doi.org/10.1096/fasebj.2.2.3277884
  • Esmaili, E., & Shahlaei, M. (2015). Analysis of the flexibility and stability of the structure of magainin in a bilayer, and in aqueous and nonaqueous solutions using molecular dynamics simulations. Journal of Molecular Modeling, 21(4), 73. https://doi.org/10.1007/s00894-015-2622-4
  • Farhadian, N., Godiny, M., Moradi, S., Azandaryani, A. H., & Shahlaei, M. (2018). Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: Development, characterization and process optimization. Materials Science & Engineering C, Materials for Biological Applications, 92, 540–546. https://doi.org/10.1016/j.msec.2018.07.002
  • Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins, 23(4), 566–579. https://doi.org/10.1002/prot.340230412
  • George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. Journal of Controlled Release, 114(1), 1–14. https://doi.org/10.1016/j.jconrel.2006.04.017
  • Giovagnoli, S., Luca, G., Blasi, P., Mancuso, F., Schoubben, A., Arato, I., Calvitti, M., Falabella, G., Basta, G., Bodo, M., Calafiore, R., & Ricci, M. (2015). Alginates in pharmaceutics and biomedicine: Is the future so bright? Current Pharmaceutical Design, 21(33), 4917–4935. https://doi.org/10.2174/1381612821666150820105639
  • Grigera, J. R., Donnamaría, C., & Howard, E. I. (1993). Flexibility of polysacharides using molecular dynamics. In Livesay, D. (Ed.), Condensed matter theories (pp. 527–534). Springer.
  • Gund, P., Andose, J. D., Rhodes, J. B., & Smith, G. M. (1980). Three-dimensional molecular modeling and drug design. Science, 208(4451), 1425–1431. https://doi.org/10.1126/science.6104357
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hao, G.-F., Yang, G.-F., & Zhan, C.-G. (2012). Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem. Drug Discov. Today, 17(19-20), 1121–1126. https://doi.org/10.1016/j.drudis.2012.06.018
  • Hein, C. D., Liu, X.-M., & Wang, D. (2008). Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical Research, 25(10), 2216–2230. https://doi.org/10.1007/s11095-008-9616-1
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Ho, B. K., Thomas, A., & Brasseur, R. (2003). Revisiting the Ramachandran plot: Hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Science, 12(11), 2508–2522. https://doi.org/10.1110/ps.03235203
  • Hooft, R. W., Sander, C., & Vriend, G. (1997). Objectively judging the quality of a protein structure from a Ramachandran plot. Computer Applications in the Biosciences: CABIOS, 13(4), 425–430. https://doi.org/10.1093/bioinformatics/13.4.425
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hung, C. L., & Chen, C. C. (2014). Computational approaches for drug discovery. Drug Development Research, 75(6), 412–418. https://doi.org/10.1002/ddr.21222
  • Jafari, F., Moradi, S., Nowroozi, A., Sadrjavadi, K., Hosseinzadeh, L., & Shahlaei, M. (2017). Exploring the binding mechanism of paraquat to DNA by a combination of spectroscopic, cellular uptake, molecular docking and molecular dynamics simulation methods. New Journal of Chemistry, 41(23), 14188–14198. https://doi.org/10.1039/C7NJ01645J
  • Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M.-T. (2016). Computational approaches in target identification and drug discovery. Computational and Structural Biotechnology Journal, 14, 177–184. https://doi.org/10.1016/j.csbj.2016.04.004
  • Kitao, A., & Go, N. (1999). Investigating protein dynamics in collective coordinate space. Current Opinion in Structural Biology, 9(2), 164–169. https://doi.org/10.1016/S0959-440X(99)80023-2
  • Kleywegt, G. J., & Jones, T. A. (1996). Phi/psi-chology: Ramachandran revisited. Structure, 4(12), 1395–1400. https://doi.org/10.1016/S0969-2126(96)00147-5
  • Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Luo, Y., Kirker, K. R., & Prestwich, G. D. (2000). Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery. Journal of Controlled Release, 69(1), 169–184. https://doi.org/10.1016/S0168-3659(00)00300-X
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
  • Mandal, S., Moudgil, M., & Mandal, S. K. (2009). Rational drug design. European Journal of Pharmacology, 625(1-3), 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065
  • Moore, K. W., O’Garra, A., de Waal Malefyt, R., Vieira, P., & Mosmann, T. R. (1993). Interleukin-10. Annual Review of Immunology, 11(1), 165–190. https://doi.org/10.1146/annurev.iy.11.040193.001121
  • Moradi, S., Hosseini, E., Abdoli, M., Khani, S., & Shahlaei, M. (2019). Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII. Carbohydrate Polymers, 203, 52–59. https://doi.org/10.1016/j.carbpol.2018.09.032
  • Moradi, S., Taran, M., Mohajeri, P., Sadrjavadi, K., Sarrami, F., Karton, A., & Shahlaei, M. (2018). Study of dual encapsulation possibility of hydrophobic and hydrophilic drugs into a nanocarrier based on bio-polymer coated graphene oxide using density functional theory, molecular dynamics simulation and experimental methods. Journal of Molecular Liquids, 262, 204–217. https://doi.org/10.1016/j.molliq.2018.04.089
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268. https://doi.org/10.1080/00268978400101201
  • Ooms, F. (2000). Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Current Medicinal Chemistry, 7(2), 141–158. https://doi.org/10.2174/0929867003375317
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Rhodes, G. (2006). Chapter 9 – Other diffraction methods. In G. Rhodes (Ed.), Crystallography made crystal clear (3rd ed., pp. 211–235). Academic Press.
  • Sabat, R., Wallace, E., Endesfelder, S., & Wolk, K. (2007). IL-19 and IL-20: Two novel cytokines with importance in inflammatory diseases. Expert Opinion on Therapeutic Targets, 11(5), 601–612. https://doi.org/10.1517/14728222.11.5.601
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Singh, A. V. (2011). Biopolymers in drug delivery: A review. Pharmacologyonline, 1, 666–674.
  • Sinha, V., & Trehan, A. (2003). Biodegradable microspheres for protein delivery. Journal of Controlled Release, 90(3), 261–280. https://doi.org/10.1016/S0168-3659(03)00194-9
  • Sriamornsak, P. (2011). Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery, 8(8), 1009–1023. https://doi.org/10.1517/17425247.2011.584867
  • Takada, S., Yamagata, Y., Misaki, M., Taira, K., & Kurokawa, T. (2003). Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique. Journal of Controlled Release, 88(2), 229–242. https://doi.org/10.1016/S0168-3659(02)00494-7
  • Thomas, S., Durand, D., Chassenieux, C., & Jyotishkumar, P. (2013). Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. John Wiley & Sons.
  • Tracy, M. A. (1998). Development and scale-up of a microsphere protein delivery system . Biotechnology Progress, 14(1), 108–115. https://doi.org/10.1021/bp9701271
  • Van De Manakker, F., Vermonden, T., Van Nostrum, C. F., & Hennink, W. E. (2009). Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 10(12), 3157–3175. https://doi.org/10.1021/bm901065f
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Van Gunsteren, W. F., & Berendsen, H. J. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. International Journal of Nanomedicine, 6, 765–774. https://doi.org/10.2147/IJN.S17296
  • Wang, W. (1999). Instability, stabilization, and formulation of liquid protein pharmaceuticals. International Journal of Pharmaceutics, 185(2), 129–188. https://doi.org/10.1016/S0378-5173(99)00152-0
  • Werle, M., & Bernkop-Schnürch, A. (2006). Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids, 30(4), 351–367. https://doi.org/10.1007/s00726-005-0289-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.