1,121
Views
15
CrossRef citations to date
0
Altmetric
Letter to the Editor

Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2

ORCID Icon, , & ORCID Icon
Pages 5327-5333 | Received 28 May 2020, Accepted 11 Jun 2020, Published online: 24 Jun 2020

References

  • Bourinbaiar, A. S., & Fruhstorfer, E. C. (1996). The effect of histamine type 2 receptor antagonists on human immunodeficiency virus (HIV) replication: Identification of a new class of antiviral agents. Life Sciences., 59(23), 365–370. https://doi.org/10.1016/s0024-3205(96)00553-x
  • Cao, Y. C., Deng, Q. X., & Dai, S. X. (2020). Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Medicine and Infectious Disease, 101647. https://doi.org/10.1016/j.tmaid.2020.101647
  • Chandra, A., Gurjar, V., Qamar, I., & Singh, N. (2020). Identification of potential inhibitors of SARS-COV-2 Endoribonuclease (EndoU) from FDA approved drugs: A drug repurposing approach to find therapeutics for COID19. Journal of Biomolecular Structure and Dynamics, 38, 1–6. https://doi.org/10.1080/07391102.2020.1775127
  • Chang, C., Sue, S.-C., Yu, T., Hsieh, C.-M., Tsai, C.-K., Chiang, Y.-C., Lee, S., Hsiao, H., Wu, W.-J., Chang, W.-L., Lin, C.-H., & Huang, T. (2006). Modular organization of SARS coronavirus nucleocapsid protein. Journal of Biomedical Science, 13(1), 59–72. https://doi.org/10.1007/s11373-005-9035-9
  • Cucinotta, D., & Vanelli, M. (2020). WHO declares COVID-19 a pandemic. Acta Bio-Medica: Atenei Parmensis, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/ https://doi.org/10.1063/1.470117
  • Freedberg, D. E. (2020). Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 Patients: A retrospective cohort study. medRxiv, doi: https://doi.org/https://doi.org/ https://doi.org/10.1101/2020.05.01.20086694
  • Fulbabu Sk, M., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2020). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 38, 1–21. https://doi.org/10.1080/07391102.2020.1768149
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 38, 1–7. https://doi.org/10.1080/07391102.2020.1751300
  • Hess, U., Blairy, S., & Kleck, R. E. (1997). The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21(4), 241–257. https://doi.org/10.1023/A:1024952730333
  • Khan, Y., Garg, M., Gui, Q., Schadt, M., Gaikwad, A., Han, D., Yamamoto, N. A. D., Hart, P., Welte, R., Wilson, W., Czarnecki, S., Poliks, M., Jin, Z., Ghose, K., Egitto, F., Turner, J., & Arias, A. C. (2016). Flexible hybrid electronics: Direct interfacing of soft and hard electronics for wearable health monitoring. Advanced Functional Materials, 26(47), 8764–8775. https://doi.org/10.1002/adfm.201603763
  • Kiemer, L., Lund, O., Brunak, S., & Blom, N. (2004). Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics, 5(1), 72. https://doi.org/10.1186/1471-2105-5-72
  • Kong, R., Yang, G. B., Xue, R., Liu, M., Wang, F., Hu, J. P., Guo, X. Q., & Chang, S. (2020). COVID-19 Docking Server: An interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19. arXiv:2003.00163v1 [q-bio.BM].
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews. Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Lobo-Galo, N., Terrazas-López, M., Martínez-Martínez, A., & Díaz-Sánchez, Á. G. (2020). FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Journal of Biomolecular Structure and Dynamics, 38, 1–2. https://doi.org/10.1080/07391102.2020.1764393
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 38, 1–7. https://doi.org/10.1080/07391102.2020.1752802
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PLoS One, 15(3), e0231236. https://doi.org/10.1371/journal.pone.0231236
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Quimque, M. T., Notarte, K. I., Fernandez, R. A., Mendoza, M. A., Liman, R. A., Lim, J. A., Pilapil, L. A., Ong, J. K., Pastrana, A. M., Khan, A., & Wei, D. Q. (2020). Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. Journal of Biomolecular Structure and Dynamics, 38, 1–23. https://doi.org/10.1080/07391102.2020.1776639
  • Ratia, K., Saikatendu, K. S., Santarsiero, B. D., Barretto, N., Baker, S. C., Stevens, R. C., & Mesecar, A. D. (2006). Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5717–5722. https://doi.org/10.1073/pnas.0510851103
  • Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 38, 1–1. https://doi.org/10.1080/07391102.2020.1753580
  • Schenone, M., Dančík, V., Wagner, B. K., & Clemons, P. A. (2013). Target identification and mechanism of action in chemical biology and drug discovery. Nature Chemical Biology, 9(4), 232–240. https://doi.org/10.1038/nchembio.1199
  • Sekiguchi, T., Nishioka, T., Kogure, M., Kusano, M., Horikoshi, T., Sugiyama, T., & Kobayashi, S. (1987). Once-daily administration of famotidine for reflux esophagitis. Scandinavian Journal of Gastroenterology. Supplement, 134(Suppl 134), 51–54. https://doi.org/10.3109/00365528709090141
  • Sen Gupta, P. S., Islam, R. N., Banerjee, S., Nayek, A., Rana, M. K., & Bandyopadhyay, A. K. (2020). Screening and molecular characterization of lethal mutations of human homogentisate 1, 2 dioxigenase. Journal of Biomolecular Structure and Dynamics, 38, 1–1. https://doi.org/10.1080/07391102.2020.1736158
  • Shaffer, L. (2020). 15 drugs being tested to treat COVID-19 and how they would work. Nature Medicine. https://www.nature.com/articles/d41591-020-00019-9
  • Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., Schulz, L., Widera, M., Mehdipour, A. R., Tascher, G., & Geurink, P. P. (2020). Inhibition of papain-like protease PLpro blocks SARS-CoV-2 spread and promotes anti-viral immunity. https://doi.org/10.21203/rs.3.rs-27134/v1
  • Singh, V. K., Srivastava, R., S., Gupta, P. S., Naaz, F., Chaurasia, H., Mishra, R., Rana, M. K., & Singh, R. K. (2020). Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: Design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38, 1–8. https://doi.org/10.1080/07391102.2020.1748111
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Umesh, K. D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 38, 1–9. https://doi.org/10.1080/07391102.2020.1763202
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.