646
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational modeling of transforming growth factor β and activin a receptor complex formation in the context of promiscuous signaling regulation

& ORCID Icon
Pages 5166-5181 | Received 08 Apr 2020, Accepted 14 Jun 2020, Published online: 27 Jun 2020

References

  • Ajay Kumar, T. V., Athavan, A. A. S., Loganathan, C., Saravanan, K., Kabilan, S., & Parthasarathy, V. (2018). Design, 3D QSAR modeling and docking of TGF-β type I inhibitors to target cancer. Computational Biology and Chemistry, 76, 232–244. https://doi.org/10.1016/j.compbiolchem.2018.07.011
  • Akhurst, R. J. (2017). Targeting TGF-β signaling for therapeutic gain. Cold Spring Harbor Perspectives in Biology, 9(10), a022301. pii: https://doi.org/10.1101/cshperspect.a022301
  • Akhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature Reviews. Drug Discovery, 11(10), 790–811. https://doi.org/10.1038/nrd3810
  • Almeida, M. O., Costa, C. H. S., Gomes, G. C., Lameira, J., Alves, C. N., & Honorio, K. M. (2018). Computational analyses of interactions between ALK-5 and bioactive ligands: Insights for the design of potential anticancer agents. Journal of Biomolecular Structure & Dynamics, 36(15), 4010–4022. https://doi.org/10.1080/07391102.2017.1404938
  • Almeida, M. O., Trossini, G. H., Maltarollo, V. G., Silva, D. C., & Honorio, K. M. (2016). In silico studies on the interaction between bioactive ligands and ALK5, a biological target related to the cancer treatment. Journal of Biomolecular Structure & Dynamics, 34(9), 2045–2053. https://doi.org/10.1080/07391102.2015.1106340
  • Bauer, J., Ozden, O., Akagi, N., Carroll, T., Principe, D. R., Staudacher, J. J., Spehlmann, M. E., Eckmann, L., Grippo, P. J., & Jung, B. (2015). Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Molecular Cancer, 14, 182. https://doi.org/10.1186/s12943-015-0456-4
  • Bauer, J., Sporn, J. C., Cabral, J., Gomez, J., & Jung, B. (2012). Effects of Activin and TGFβ on p21 in colon cancer. PLoS One, 7(6), e39381. https://doi.org/10.1371/journal.pone.0039381
  • Berjanskii, M., Zhou, J., Liang, Y., Lin, G., & Wishart, D. S. (2012). Resolution-by-proxy: A simple measure for assessing and comparing the overall quality of NMR protein structures. Journal of Biomolecular NMR, 53(3), 167–180. https://doi.org/10.1007/s10858-012-9637-2
  • Bhowmick, N. A., Ghiassi, M., Aakre, M., Brown, K., Singh, V., & Moses, H. L. (2003). TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15548–15553. https://doi.org/10.1073/pnas.2536483100
  • Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., & Massagué, J. (1998). Determinants of specificity in TGF-beta signal transduction. Genes & Development, 12(14), 2144–2152. https://doi.org/10.1101/gad.12.14.2144
  • Cheng, N., Chytil, A., Shyr, Y., Joly, A., & Moses, H. L. (2008). Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular Cancer Research, 6(10), 1521–1533. https://doi.org/10.1158/1541-7786.MCR-07-2203
  • Denicourt, C., & Dowdy, S. F. (2003). Another twist in the transforming growth factor beta-induced cell-cycle arrest chronicle. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15290–15291. https://doi.org/10.1073/pnas.0307282100
  • Dijke, P. T., Franzen, P., Heldin, C., Miyazono, K., & Yamashita, H. (2003). Activin receptor-like kinases, proteins having serine threonine kinase domains and their use. European Patent Office: EP 0677104 B1.
  • Ehrlich, M., Gutman, O., Knaus, P., & Henis, Y. I. (2012). Oligomeric interactions of TGF-β and BMP receptors. FEBS Letters, 586(14), 1885–1896. https://doi.org/10.1016/j.febslet.2012.01.040
  • Ehrlich, M., Horbelt, D., Marom, B., Knaus, P., & Henis, Y. I. (2011). Homomeric and heteromeric complexes among TGF-β and BMP receptors and their roles in signaling. Cellular Signalling, 23(9), 1424–1432. https://doi.org/10.1016/j.cellsig.2011.04.004
  • Ellenrieder, V., Hendler, S. F., Ruhland, C., Boeck, W., Adler, G., & Gress, T. M. (2001). TGF-beta-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and the urokinase plasminogen activator system. International Journal of Cancer, 93(2), 204–211. https://doi.org/10.1002/ijc.1330
  • Foey, A. D. (2015). Macrophage polarisation: A collaboration of differentiation, activation and pre-programming?. Journal of Clinical and Cellular Immunology, 6(1), 293. https://doi.org/10.4172/2155-9899.1000293
  • Fritsch, C., Lanfear, R., & Ray, R. P. (2010). Rapid evolution of a novel signalling mechanism by concerted duplication and divergence of a BMP ligand and its extracellular modulators. Development Genes and Evolution, 220(9-10), 235–250. https://doi.org/10.1007/s00427-010-0341-5
  • Fuyuhiro, Y., Yashiro, M., Noda, S., Kashiwagi, S., Matsuoka, J., Doi, Y., Kato, Y., Hasegawa, T., Sawada, T., & Hirakawa, K. (2011). Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. British Journal of Cancer, 105(7), 996–1001. https://doi.org/10.1038/bjc.2011.330
  • Goebel, E. J., Corpina, R. A., Hinck, C. S., Czepnik, M., Castonguay, R., Grenha, R., Boisvert, A., Miklossy, G., Fullerton, P. T., Matzuk, M. M., Idone, V. J., Economides, A. N., Kumar, R., Hinck, A. P., & Thompson, T. B. (2019). Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proceedings of the National Academy of Sciences of the United States of America, 116(31), 15505–15513. https://doi.org/10.1073/pnas.1906253116
  • Gold, E., Jetly, N., O'Bryan, M. K., Meachem, S., Srinivasan, D., Behuria, S., Sanchez-Partida, L. G., Woodruff, T., Hedwards, S., Wang, H., McDougall, H., Casey, V., Niranjan, B., Patella, S., & Risbridger, G. (2009). Activin C antagonizes Activin A in vitro and overexpression leads to pathologies in vivo. The American Journal of Pathology, 174(1), 184–195. https://doi.org/10.2353/ajpath.2009.080296
  • Gold, E., Marino, F. E., Harrison, C., Makanji, Y., & Risbridger, G. (2013). Activin-β(c) reduces reproductive tumour progression and abolishes cancer-associated cachexia in inhibin-deficient mice. The Journal of Pathology, 229(4), 599–607. https://doi.org/10.1002/path.4142
  • Goumans, M. J., Liu, Z., & ten Dijke, P. (2009). TGF-beta signaling in vascular biology and dysfunction. Cell Research, 19(1), 116–127. https://doi.org/10.1038/cr.2008.326
  • Goumans, M. J., Valdimarsdottir, G., Itoh, S., Lebrin, F., Larsson, J., Mummery, C., Karlsson, S., & ten Dijke, P. (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Molecular Cell, 12(4), 817–828. https://doi.org/10.1016/s1097-2765(03)00386-1
  • de Gramont, A., Faivre, S., & Raymond, E. (2017). Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology, 6(1), e1257453https://doi.org/10.1080/2162402X.2016.1257453
  • Gray, A. M., & Mason, A. J. (1990). Requirement for Activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science (New York, N.Y.).), 247(4948), 1328–1330. https://doi.org/10.1126/science.2315700
  • Greenwald, J., Vega, M. E., Allendorph, G. P., Fischer, W. H., Vale, W., & Choe, S. (2004). A flexible Activin explains the membrane-dependent cooperative assembly of TGF-beta family receptors. Molecular Cell, 15(3), 485–489. https://doi.org/10.1016/j.molcel.2004.07.011
  • Grönroos, E., Kingston, I. J., Ramachandran, A., Randall, R. A., Vizán, P., & Hill, C. S. (2012). Transforming growth factor β inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes. Molecular and Cellular Biology, 32(14), 2904–2916. https://doi.org/10.1128/MCB.00231-12
  • Grütter, C., Wilkinson, T., Turner, R., Podichetty, S., Finch, D., McCourt, M., Loning, S., Jermutus, L., & Grütter, M. G. (2008). A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20251–20256. https://doi.org/10.1073/pnas.0807200106
  • Guo, X., & Wang, X. F. (2009). Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Research, 19(1), 71–88. https://doi.org/10.1038/cr.2008.302
  • Harrison, C. A., Gray, P. C., Koerber, S. C., Fischer, W., & Vale, W. (2003). Identification of a functional binding site for Activin on the type I receptor ALK4. The Journal of Biological Chemistry, 278(23), 21129–21135. https://doi.org/10.1074/jbc.M302015200
  • Hawinkels, L. J. A. C., Paauwe, M., Verspaget, H. W., Wiercinska, E., van der Zon, J. M., van der Ploeg, K., Koelink, P. J., Lindeman, J. H. N., Mesker, W., ten Dijke, P., & Sier, C. F. M. (2014). Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene, 33(1), 97–107. https://doi.org/10.1038/onc.2012.536
  • Heldin, C. H., & Moustakas, A. (2016). Signaling receptors for the TGF-β family members. Cold Spring Harbor Perspectives in Biology, 8(8), a022053. https://doi.org/10.1101/cshperspect.a022053
  • Hill, C. S. (2016). Transcriptional control by the SMADs. Cold Spring Harbor Perspectives in Biology, 8(10), a022079. https://doi.org/10.1101/cshperspect.a022079
  • Hinck, A. P. (2012). Structural studies of the TGF-βs and their receptors – Insights into evolution of the TGF-β superfamily. FEBS Letters, 586(14), 1860–1870. https://doi.org/10.1016/j.febslet.2012.05.028
  • Hinck, A. P., Mueller, T. D., & Springer, T. A. (2016). Structural biology and evolution of the TGF-β family. Cold Spring Harbor Perspectives in Biology, 8(12), a022103. https://doi.org/10.1101/cshperspect.a022103
  • Jiang, J.-H., & Deng, P. (2019). Discovery of new inhibitors of transforming growth factor-beta type 1 receptor by utilizing docking and structure-activity relationship analysis. International Journal of Molecular Sciences, 20(17), 4090. https://doi.org/10.3390/ijms20174090
  • Jiang, M. N., Zhou, X. P., Sun, D. R., Gao, H., Zheng, Q. C., Zhang, H. X., & Liang, D. (2018). 2D-QSAR study, molecular docking, and molecular dynamics simulation studies of interaction mechanism between inhibitors and transforming growth factor-beta receptor I (ALK5)). Journal of Biomolecular Structure & Dynamics, 36(14), 3705–3717. https://doi.org/10.1080/07391102.2017.1396256
  • Jung, B., Gomez, J., Chau, E., Cabral, J., Lee, J. K., Anselm, A., Slowik, P., Ream-Robinson, D., Messer, K., Sporn, J., Shin, S. K., Boland, C. R., Goel, A., & Carethers, J. M. (2009). Activin signaling in microsatellite stable colon cancers is disrupted by a combination of genetic and epigenetic mechanisms. PLoS One, 4(12), e8308. https://doi.org/10.1371/journal.pone.0008308
  • Katz, L. H., Li, Y., Chen, J. S., Muñoz, N. M., Majumdar, A., Chen, J., & Mishra, L. (2013). Targeting TGF-β signaling in cancer. Expert Opinion on Therapeutic Targets, 17(7), 743–760. https://doi.org/10.1517/14728222.2013.782287
  • Kausar, T., & Nayeem, S. M. (2017). Computational analysis on conformational dynamics of bone morphogenetic protein-2 (BMP-2). Journal of Biomolecular Structure & Dynamics, 35(10), 2224–2234. https://doi.org/10.1080/07391102.2016.1214083
  • Kausar, T., & Nayeem, S. M. (2018). Identification of small molecule inhibitors of ALK2: A virtual screening, density functional theory, and molecular dynamics simulations study. Journal of Molecular Modeling, 24(9), 262. https://doi.org/10.1007/s00894-018-3789-2
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2018). CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Research, 46(W1), W338–W343. https://doi.org/10.1093/nar/gky356
  • Massagué, J. (1998). TGF-beta signal transduction. Annual Review of Biochemistry, 67, 753–791. https://doi.org/10.1146/annurev.biochem.67.1.753
  • Labbé, E., Silvestri, C., Hoodless, P. A., Wrana, J. L., & Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Molecular Cell, 2(1), 109–120. https://doi.org/10.1016/s1097-2765(00)80119-7
  • Laiho, M., Weis, F. M., Boyd, F. T., Ignotz, R. A., & Massagué, J. (1991). Responsiveness to transforming growth factor-beta (TGF-beta) restored by genetic complementation between cells defective in TGF-beta receptors I and II. The Journal of Biological Chemistry, 266(14), 9108–9112.
  • Liu, J., Chen, S., Wang, W., Ning, B.-F., Chen, F., Shen, W., Ding, J., Chen, W., Xie, W.-F., & Zhang, X. (2016). Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Letters, 379(1), 49–59. https://doi.org/10.1016/j.canlet.2016.05.022
  • Liu, Y., Grimm, M., Dai, W. T., Hou, M. C., Xiao, Z. X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6
  • Lo, R. S., Chen, Y. G., Shi, Y., Pavletich, N. P., & Massagué, J. (1998). The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. The EMBO Journal, 17(4), 996–1005. https://doi.org/10.1093/emboj/17.4.996
  • Luo, K., & Lodish, H. F. (1997). Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. The EMBO Journal, 16(8), 1970–1981. https://doi.org/10.1093/emboj/16.8.1970
  • Mellor, S. L., Ball, E. M. A., O'Connor, A. E., Ethier, J.-F., Cranfield, M., Schmitt, J. F., Phillips, D. J., Groome, N. P., & Risbridger, G. P. (2003). Activin betaC-subunit heterodimers provide a new mechanism of regulating Activin levels in the prostate. Endocrinology, 144(10), 4410–4419. https://doi.org/10.1210/en.2003-0225
  • Mellor, S. L., Cranfield, M., Ries, R., Pedersen, J., Cancilla, B., de Kretser, D., Groome, N. P., Mason, A. J., & Risbridger, G. P. (2000). Localization of Activin beta(A)-, beta(B)-, and beta(C)-subunits in humanprostate and evidence for formation of new activin heterodimers of beta(C)-subunit. The Journal of Clinical Endocrinology and Metabolism, 85(12), 4851–4858. https://doi.org/10.1210/jcem.85.12.7052
  • Moulin, A., Mathieu, M., Lawrence, C., Bigelow, R., Levine, M., Hamel, C., Marquette, J.-P., Le Parc, J., Loux, C., Ferrari, P., Capdevila, C., Dumas, J., Dumas, B., Rak, A., Bird, J., Qiu, H., Pan, C. Q., Edmunds, T., & Wei, R. R. (2014). Structures of a pan-specific antagonist antibody complexed to different isoforms of TGFβ reveal structural plasticity of antibody-antigen interactions. Protein Science: A Publication of the Protein Society, 23(12), 1698–1707. https://doi.org/10.1002/pro.2548
  • Mueller, T. D., & Nickel, J. (2012). Promiscuity and specificity in BMP receptor activation. FEBS Letters, 586(14), 1846–1859. https://doi.org/10.1016/j.febslet.2012.02.043
  • Namwanje, M., & Brown, C. W. (2016). Activins and inhibins: Roles in development, physiology, and disease. Cold Spring Harbor Perspectives in Biology, 8(7), a021881. pii: https://doi.org/10.1101/cshperspect.a021881
  • Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., & de Gramont, A. (2015). Targeting the TGFβ pathway for cancer therapy. Pharmacology & Therapeutics, 147, 22–31. https://doi.org/10.1016/j.pharmthera.2014.11.001
  • Olsen, O. E., Wader, K. F., Hella, H., Mylin, A. K., Turesson, I., Nesthus, I., Waage, A., Sundan, A., & Holien, T. (2015). Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Communication and Signaling: CCS, 13, 27. https://doi.org/10.1186/s12964-015-0104-z
  • Pardali, E., Goumans, M. J., & ten Dijke, P. (2010). Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends in Cell Biology, 20(9), 556–567. https://doi.org/10.1016/j.tcb.2010.06.006
  • Peterson, A. J., & O'Connor, M. B. (2014). Strategies for exploring TGF-β signaling in Drosophila. Methods (San Diego, Calif.).), 68(1), 183–193. https://doi.org/10.1016/j.ymeth.2014.03.016
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK Server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics (Oxford, England)), 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097
  • Risbridger, G. P., Mellor, S. L., McPherson, S. J., & Schmitt, J. F. (2001). The contributions of inhibins and Activins to malignant prostate disease. Molecular and Cellular Endocrinology., 180(1-2), 149–153. https://doi.org/10.1016/S0303-7207(01)00497-X
  • Sengle, G., Ono, R. N., Sasaki, T., & Sakai, L. Y. (2011). Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: Extracellular matrix interactions and growth factor bioavailability. The Journal of Biological Chemistry, 286(7), 5087–5099. https://doi.org/10.1074/jbc.M110.188615
  • Siegel, P. M., & Massagué, J. (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature Reviews. Cancer, 3(11), 807–821. https://doi.org/10.1038/nrc1208
  • Smith, A. L., Robin, T. P., & Ford, H. L. (2012). Molecular pathways: Targeting the TGF-β pathway for cancer therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18(17), 4514–4521. https://doi.org/10.1158/1078-0432.CCR-11-3224
  • Stevenson, J. P., Kindler, H. L., Papasavvas, E., Sun, J., Jacobs-Small, M., Hull, J., Schwed, D., Ranganathan, A., Newick, K., Heitjan, D. F., Langer, C. J., McPherson, J. M., Montaner, L. J., & Albelda, S. M. (2013). Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. OncoImmunology, 2(8), e26218. https://doi.org/10.4161/onci.26218
  • Thompson, T. B., Lerch, T. F., Cook, R. W., Woodruff, T. K., & Jardetzky, T. S. (2005). The structure of the Follistatin: Activin complex reveals antagonism of both type I and type II receptor binding. Developmental Cell, 9(4), 535–543. https://doi.org/10.1016/j.devcel.2005.09.008
  • Thompson, T. B., Woodruff, T. K., & Jardetzky, T. S. (2003). Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions . The EMBO Journal, 22(7), 1555–1566. https://doi.org/10.1093/emboj/cdg156
  • Tian, X., Guan, W., Zhang, L., Sun, W., Zhou, D., Lin, Q., Ren, W., Nadeem, L., & Xu, G. (2018). Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. Journal of Experimental & Clinical Cancer Research: CR, 37(1), 103. https://doi.org/10.1186/s13046-018-0773-8
  • Torchala, M., Moal, I. H., Chaleil, R. A., Fernandez-Recio, J., & Bates, P. A. (2013). SwarmDock: A server for flexible protein-protein docking. Bioinformatics (Oxford, England)), 29(6), 807–809. https://doi.org/10.1093/bioinformatics/btt038
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England)), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Venkataraman, G., Sasisekharan, V., Cooney, C. L., Langer, R., & Sasisekharan, R. (1995). Complex flexibility of the transforming growth factor beta superfamily. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5406–5410. https://doi.org/10.1073/pnas.92.12.5406
  • Walker, R. G., Czepnik, M., Goebel, E. J., McCoy, J. C., Vujic, A., Cho, M., Oh, J., Aykul, S., Walton, K. L., Schang, G., Bernard, D. J., Hinck, A. P., Harrison, C. A., Martinez-Hackert, E., Wagers, A. J., Lee, R. T., & Thompson, T. B. (2017). Structural basis for potency differences between GDF8 and GDF11. BMC Biology, 15(1), 19. https://doi.org/10.1186/s12915-017-0350-1
  • Walton, K. L., Makanji, Y., & Harrison, C. A. (2012). New insights into the mechanisms of activin action and inhibition. Molecular and Cellular Endocrinology, 359(1-2), 2–12. https://doi.org/10.1016/j.mce.2011.06.030
  • Wang, W., Chun, H., Baek, J., Sadik, J. E., Shirazyan, A., Razavi, P., Lopez, N., & Lyons, K. M. (2019). The TGFβ type I receptor TGFβRI functions as an inhibitor of BMP signaling in cartilage. Proceedings of the National Academy of Sciences of the United States of America, 116(31), 15570–15579. https://doi.org/10.1073/pnas.1902927116
  • Wang, X., Fischer, G., & Hyvönen, M. (2016). Structure and activation of pro-Activin A. Nature Communications, 7, 12052. https://doi.org/10.1038/ncomms12052
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Xia, Y., & Schneyer, A. L. (2009). The biology of Activin: Recent advances in structure, regulation and function. The Journal of Endocrinology, 202(1), 1–12. https://doi.org/10.1677/JOE-08-0549
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England)), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yang, J., Roy, A., & Zhang, Y. (2013). BioLiP: A semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Research, 41(Database issue), D1096–103. https://doi.org/10.1093/nar/gks966
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447
  • Yeung, T.-L., Leung, C. S., Wong, K.-K., Samimi, G., Thompson, M. S., Liu, J., Zaid, T. M., Ghosh, S., Birrer, M. J., & Mok, S. C. (2013). TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Research, 73(16), 5016–5028. https://doi.org/10.1158/0008-5472.CAN-13-0023
  • Yingling, J. M., McMillen, W. T., Yan, L., Huang, H., Sawyer, J. S., Graff, J., Clawson, D. K., Britt, K. S., Anderson, B. D., Beight, D. W., Desaiah, D., Lahn, M. M., Benhadji, K. A., Lallena, M. J., Holmgaard, R. B., Xu, X., Zhang, F., Manro, J. R., Iversen, P. W., … Driscoll, K. E. (2018). Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget, 9(6), 6659–6677. https://doi.org/10.18632/oncotarget.23795
  • Yu, Y., Xiao, C. H., Tan, L. D., Wang, Q. S., Li, X. Q., & Feng, Y. M. (2014). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. British Journal of Cancer, 110(3), 724–732. https://doi.org/10.1038/bjc.2013.768
  • Zhao, M., Hu, Y., Jin, J., Yu, Y., Zhang, S., Cao, J., Zhai, Y., Wei, R., Shou, J., Cai, W., Liu, S., Yang, X., Xu, G.-T., Yang, J., Corry, D. B., Su, S. B., Liu, X., & Yang, T. (2017). Interleukin 37 promotes angiogenesis through TGF-β signaling. Scientific Reports, 7(1), 6113. https://doi.org/10.1038/s41598-017-06124-z
  • Zúñiga, J. E., Groppe, J. C., Cui, Y., Hinck, C. S., Contreras-Shannon, V., Pakhomova, O. N., Yang, J., Tang, Y., Mendoza, V., López-Casillas, F., Sun, L., & Hinck, A. P. (2005). Assembly of TbetaRI:TbetaRII:TGFbeta ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent. Journal of Molecular Biology, 354(5), 1052–1068. https://doi.org/10.1016/j.jmb.2005.10.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.