266
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacophore based virtual screening, molecular docking and molecular dynamic simulation studies for finding ROS1 kinase inhibitors as potential drug molecules

, , , &
Pages 3385-3399 | Received 29 Jun 2020, Accepted 02 Nov 2020, Published online: 17 Nov 2020

References

  • Awad, M. M., Katayama, R., McTigue, M., Liu, W., Deng, Y. L., Brooun, A., Friboulet, L., Huang, D., Falk, M. D., Timofeevski, S., Wilner, K. D., Lockerman, E. L., Khan, T. M., Mahmood, S., Gainor, J. F., Digumarthy, S. R., Stone, J. R., Mino-Kenudson, M., Christensen, J. G., … Shaw, A. T. (2013). Acquired resistance to crizotinib from a mutation in CD74-ROS1. The New England Journal of Medicine, 368(25), 2395–2401. https://doi.org/10.1056/NEJMoa1215530
  • Bergethon, K., Shaw, A. T., Ou, S. H., Katayama, R., Lovly, C. M., McDonald, N. T., Massion, P. P., Siwak-Tapp, C., Gonzalez, A., Fang, R., Mark, E. J., Batten, J. M., Chen, H., Wilner, K. D., Kwak, E. L., Clark, J. W., Carbone, D. P., Ji, H., Engelman, J. A., … Iafrate, A. J. (2012). ROS1 rearrangements define a unique molecular class of lung cancers. Journal of Clinical Oncology, 30(8), 863–870.
  • Chen, J. M., Heller, D., Poon, B., Kang, L., & Wang, L. H. (1991). The proto-oncogene c-ros codes for a transmembrane tyrosine protein kinase sharing sequence and structural homology with sevenless protein of Drosophila melanogaster. Oncogene, 6(2), 257–264.
  • Drilon, A., Somwar, R., Wagner, J. P., Vellore, N. A., Eide, C. A., Zabriskie, M. S., Arcila, M. E., Hechtman, J. F., Wang, L., Smith, R. S., Kris, M. G., Riely, G. J., Druker, B. J., O'Hare, T., Ladanyi, M., & Davare, M. A. (2016). A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(10), 2351–2358. https://doi.org/10.1158/1078-0432.CCR-15-2013
  • Lehmann, T. P., Kujawski, J., Kruk, J., Czaja, K., Bernard, M. K., & Jagodzinski, P. P. (2017). Cell-Specific cytotoxic effect of Pyrazole derivatives on breast cancer cell lines MCF7 and MDA-MB-231. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society, 68(2), 201–207.
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gainor, J. F., Varghese, A. M., Ou, S. H., Kabraji, S., Awad, M. M., Katayama, R., Pawlak, A., Mino-Kenudson, M., Yeap, B. Y., Riely, G. J., Iafrate, A. J., Arcila, M. E., Ladanyi, M., Engelman, J. A., Dias-Santagata, D., & Shaw, A. T. (2013). ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: An analysis of 1,683 patients with non-small cell lung cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(15), 4273–4281. https://doi.org/10.1158/1078-0432.CCR-13-0318
  • Jatana, N., Jangid, S., Khare, G., Tyagi, A. K., & Latha, N. (2011). Molecular modeling studies of Fatty acyl-CoA synthetase (FadD13) from Mycobacterium tuberculosis-a potential target for the development of antitubercular drugs . Journal of Molecular Modeling, 17(2), 301–313. https://doi.org/10.1007/s00894-010-0727-3
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Jun, H. J., Johnson, H., Bronson, R. T., Feraudy, S., White, F., & Charest, A. (2012). The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Research, 72(15), 3764–3774. https://doi.org/10.1158/0008-5472.CAN-11-3990
  • Khedkar, S. A., Malde, A. K., Coutinho, E. C., & Srivastava, S. (2007). Pharmacophore modeling in drug discovery and development: An overview. Medicinal Chemistry (Shariqah (United Arab Emirates)))), 3(2), 187–197. https://doi.org/10.2174/157340607780059521
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Sengupta, D., Verma, D., & Naik, P. K. (2007). Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: Screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties. Journal of Biosciences, 32(7), 1307–1316. http://www.springerlink.com/content/d323x7865421j4g0/.
  • Ligprep version 3.6. (2018). Schrödinger, LLC., NY.
  • Lin, J. J., & Shaw, A. T. (2017). Recent Advances in Targeting ROS1 in Lung Cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 12(11), 1611–1625. https://doi.org/10.1016/j.jtho.2017.08.002
  • Luk, P. P., Selinger, C. I., Mahar, A., & Cooper, W. A. (2018). Biomarkers for ALK and ROS1 in lung cancer: Immunohistochemistry and Fluorescent In Situ Hybridization. Archives of Pathology & Laboratory Medicine, 142(8), 922–928. https://doi.org/10.5858/arpa.2017-0502-RA
  • Luo, L. X., Fan, X. X., Li, Y., Peng, X., Ji, Y. C., Hsiao, W. W., Liu, L., Leung, E. L., & Yao, X. J. (2017). Identification of mitoxantrone as a new inhibitor of ROS1 fusion protein in non-small cell lung cancer cells. MedChemComm, 8(3), 621–624. https://doi.org/10.1039/c6md00643d
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Maestro version 10.4. (2018). Schrödinger, LLC., NY.
  • Moran, G. S., Tagle, R. R., Mitnik, D. G., Nieto, S. R., Deb, P. K., Bunster, M., & Gonzalez, F. L. (2013). Docking studies of binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis. Journal of Chemistry., 2013, 1–5. https://doi.org/10.1155/2013/601270.
  • Moro-Sibilot, D., Faivre, L., Zalcman, G., Pérol, M., Barlesi, F., Otto, J., Monnet, I., Cortot, A. B., Wislez, M., Lena, H., Mazières, J., Durando, X., Lantuejoul, S., Rouquette, I., McLeer Florin, A., Ferretti, G., Hoog Labouret, N., Nowak, F., Jimenez, M., & Vassal, G. (2015). Crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC). Preliminary results of the ACSé phase II trial [abstract. Journal of Clinical Oncology, 33(15_suppl), 8065–8065. https://doi.org/10.1093/annonc/mdz407.
  • Navada, S., Lai, P., Schwartz, A. G., & Kalemkerian, G. P. (2006). Temporal trends in small cell lung cancer: Analysis of the national Surveillance Epidemiology and End-Results (SEER) database [abstract 7082. Journal of Clinical Oncology, 24(18_suppl), 7082–7082. ]. suppl:384S. https://doi.org/10.1200/jco.2006.24.18_suppl.7082.
  • Ou, S. H., Tan, J., Yen, Y., & Soo, R. A. (2012). ROS1 as a 'druggable' receptor tyrosine kinase: Lessons learned from inhibiting the ALK pathway. Expert Review of Anticancer Therapy, 12(4), 447–‐456. https://doi.org/10.1586/era.12.17
  • Park, B. S., Al-Sanea, M. M., Abdelazem, A. Z., Park, H. M., Roh, E. J., Park, H., Yoo, K. H., Sim, T., Tae, J. S., & Lee, S. H. (2014). Structure-based optimization and biological evaluation of trisubstituted pyrazole as a core structure of potent ROS1 kinase inhibitors. Bioorganic & Medicinal Chemistry, 22(15), 3871–3878. https://doi.org/10.1016/j.bmc.2014.06.020
  • Pathak, D., Choudhary, S., Singh, P. K., Singh, M., Chadha, N., & Silakari, O. (2020). Pharmacophore-based designing of putative ROS-1 targeting agents for NSCLC. Mol Divers, 4(8), 719–725. https://doi.org/10.1007/s11030-020-10036-y.
  • Sterling, & Irwin, J. (2015). Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.5b00559.
  • Chen, X., Liu, M., & Gilson, M. K. (2001). BindingDB: A Web-accessible molecular recognition database. Combinatorial Chemistry & High Throughput Screening, 4(8), 719–725. doi: 10.2174/1386207013330670.
  • Phase version 4.5. (2018). Schrödinger. LLC.
  • Pradhan, D., Priyadarshini, V., Munikumar, M., Swargam, S., Umamaheswari, A., & Bitla, A. (2014). Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 32(2), 171–185. DOI: 10.1007/s00894-010-0727-3.
  • Ramar, V., & Pappu, S. (2016). Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB-A molecular docking and dynamics approach. Computational Biology and Chemistry, 62, 29–35. https://doi.org/10.1016/j.compbiolchem.2016.03.006
  • Reddy, K. K., Singh, S. K., Tripathi, S. K., Selvaraj, C., & Suryanarayanan, V. (2013). Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-demethylase inhibitors. Journal of Receptor and Signal Transduction Research, 33(4), 234–243. https://doi.org/10.3109/10799893.2013.789912
  • Zou, H. Y., Li, Q., Engstrom, L. D., West, M., Appleman, V., Wong, K. A., Mctigue, M., Deng, Y., Liu, W., Brooun, A., Timofeevski, S., Mcdonnell, S. R. P., Jiang, P., Falk, M. D., Lappin, P. B., Affolter, T., Nichols, T., Hu, W., Lam, J., … Fantin, V. R. (2015). Pf-06463922 is a potent and selective next-generation Ros1/Alk inhibitor capable of blocking Crizotinib-Resistant Ros1 Mutations. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3493–3498. https://doi.org/10.1073/PNAS.1420785112
  • Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., … Comb, M. J. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190–1203. https://doi.org/10.1016/j.cell.2007.11.025
  • Rimkunas, V. M., Crosby, K. E., Li, D., Hu, Y., Kelly, M. E., Gu, T.-L., Mack, J. S., Silver, M. R., Zhou, X., & Haack, H. (2012). Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: Identification of a FIG-ROS1 fusion. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 18(16), 4449–‐4457. https://doi.org/10.1158/1078-0432.CCR-11-3351
  • Roskoski, R. Jr. (2017). ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacological Research, 121, 202–212. https://doi.org/10.1016/j.phrs.2017.04.022
  • Roys, A., Chang, X., Liu, Y., Xu, X., Wu, Y., & Zuo, D. (2019). Resistance mechanisms and potent-targeted therapies of ROS1-positive lung cancer. Cancer Chemotherapy and Pharmacology, 84(4), 679–688. https://doi.org/10.1007/s00280-019-03902-6
  • Sastry, G. M., Dixon, S. L., & Sherman, W. (2011). Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring . Journal of Chemical Information and Modeling, 51(10), 2455–2466. https://doi.org/10.1021/ci2002704
  • Selvaraj, C., Omer, A., Singh, P., & Singh, S. K. (2015). Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. Molecular Biosystems, 11(1), 178–189. https://doi.org/10.1039/c4mb00486h
  • Selvaraj, C., Singh, S., Tripathi, S., Reddy, K., & Rama, M. (2012). In silico screening of indinavir-based compounds targeting proteolytic activity in HIV PR: Binding pocket fit approach. Medicinal Chemistry Research, 21(12), 4060–4068. https://doi.org/10.1007/s00044-011-9941-5.
  • Selvaraj, C., & Singh, S. K. (2014). Validation of potential inhibitors for SrtA against Bacillus anthracis by combined approach of ligand-based and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 32(8), 1333–1349. DOI: 10.3109/10799893.2013.789912.
  • Shaw, A. T., Ou, S. H., Bang, Y. J., Camidge, D. R., Solomon, B. J., Salgia, R., Riely, G. J., Varella-Garcia, M., Shapiro, G. I., Costa, D. B., Doebele, R. C., Le, L. P., Zheng, Z., Tan, W., Stephenson, P., Shreeve, S. M., Tye, L. M., Christensen, J. G., Wilner, K. D., Clark, J. W., & Iafrate, A. J. (2014). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England Journal of Medicine, 371(21), 1963–1971. https://doi.org/10.1056/NEJMoa1406766
  • Sher, T., Dy, G. K., & Adjei, A. A. (2008). Small cell lung cancer. Mayo Clinic Proceedings, 83(3), 355–367. https://doi.org/10.4065/83.3.355
  • Song, Z., Su, H., & Zhang, Y. (2016). Patients with ROS1 rearrangement-positive non-small-cell lung cancer benefit from pemetrexed-based chemotherapy. Cancer Medicine, 5(10), 2688–2693. https://doi.org/10.1002/cam4.809
  • Sonnenberg, E., Gödecke, A., Walter, B., Bladt, F., & Birchmeier, C. (1991). Transient and locally restricted expression of the ros1 protooncogene during mouse development. The EMBO Journal, 10(12), 3693–3702.
  • Sun, H., Li, Y., Tian, S., Wang, J., & Hou, T. (2014). P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: Clues from free energy landscape. PLoS Computational Biology, 10(7), e1003729. https://doi.org/10.1371/journal.pcbi.1003729
  • Takeuchi, K., Soda, M., Togashi, Y., Suzuki, R., Sakata, S., Hatano, S., Asaka, R., Hamanaka, W., Ninomiya, H., Uehara, H., Lim, Choi, Y., Satoh, Y., Okumura, S., Nakagawa, K., Mano, H., & Ishikawa, Y. (2012). RET, ROS1 and ALK fusions in lung cancer. Nature Medicine, 18(3), 378–381. https://doi.org/10.1038/nm.2658
  • Vanajothi, R., Hemamalini, V., Jeyakanthan, J., & Premkumar, K. (2020). Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. J Biomol Struct Dyn, 38 (9), 2800–2808. https://doi.org/10.1080/07391102.2019.1640132
  • Zhang, X., Perez-Sanchez, H., & Lightstone, F. C. (2017). A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Current Topics in Medicinal Chemistry, 17(14), 1631–1639. https://doi.org/10.2174/1568026616666161117112604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.