510
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking studies of phytocompounds of Rheum emodi Wall with proteins responsible for antibiotic resistance in bacterial and fungal pathogens: in silico approach to enhance the bio-availability of antibiotics

, , , ORCID Icon, , & show all
Pages 3789-3803 | Received 18 Apr 2020, Accepted 09 Nov 2020, Published online: 23 Nov 2020

References

  • Ahmad, I., & Beg, A. Z. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology, 74(2), 113–123. https://doi.org/10.1016/S0378-8741(00)00335-4
  • Ahmed, S., & Shohael, A. M. (2019). In silico studies of four anthraquinones of Senna alata L. as potential antifungal compounds. Archives, 2, 259–268.
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. 10.1093/nar/gky318
  • Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sanchez, E., Nabavi, S. F., & Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44–68. https://doi.org/10.1016/j.micres.2016.12.003
  • Bartlett, J. G., Gilbert, D. N., & Spellberg, B. (2013). Seven ways to preserve the miracle of antibiotics. Clinical Infectious Diseases, 56(10), 1445–1450. https://doi.org/10.1093/cid/c70
  • Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
  • Borges, A. J., Saavedra, M., & Simoes, M. (2015). Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Current Medicinal Chemistry, 22(21), 2590–2614. https://doi.org/10.2174/0929867322666150530210522
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 43–43.
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W. & Tang, Y. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 30099–30105.
  • Chung, Y. J., & Saier, M. H. (2001). SMR-type multidrug resistance pumps. Current Opinion in Drug Discovery & Development, 4(2), 237–245.
  • Ferreira, L., Dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384–13421. 10.3390/molecules200713384
  • Gould, I. M., & Bal, A. M. (2013). New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence, 4(2), 185–191. https://doi.org/10.4161/viru.22507
  • Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine, 8(4), 266–275. https://doi.org/10.1016/j.jaim.2017.05.004
  • Kumar, D., Karthik, M., & Rajakumar, R. (2018). In-silico antibacterial activity of active phytocompounds from the ethanolic leaves extract of Eichhornia crassipes (Mart) Solms. against selected target pathogen Pseudomonas fluorescens. Journal of Pharmacognosy and Phytochemistry, 7, 12–15.
  • Kuroda, T., & Tsuchiya, T. (2009). Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta, 1794(5), 763–768. https://doi.org/10.1016/j.bbapap.2008.11.012
  • Law, C. J., Maloney, P. C., & Wang, D. N. (2008). Ins and outs of major facilitator superfamily antiporters. Annual Review of Microbiology, 62, 289–305. https://doi.org/10.1146/annurev.micro.61.080706.093329
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3
  • Lounnas, V., Ritschel, T., Kelder, J., McGuire, R., Bywater, R. P., & Foloppe, N. (2013). Current progress in structure-based rational drug design marks a new mindset in drug discovery. Computational Structural Biotechnology Journal, 5, e201302011.
  • Lubelski, J., Konings, W. N., & Driessen, A. J. (2007). Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiology and Molecular Biology Reviews, 71(3), 463–476. https://doi.org/10.1128/MMBR.00001-07
  • Malik, E. M., & Müller, C. E. (2016). Anthraquinones as pharmacological tools and drugs. Medicinal Research Reviews, 36(4), 705–748. https://doi.org/10.1002/med.21391
  • Malik, M. A., Bhat, S. A., Fatima, B. ILQUEES., Ahmad, S. B., Sidiqui, S., & Shrivastava, P. U. R. N. I. M. A. (2016). Rheum emodi as valuable medicinal plant. International Journal of General Medicine, 5, 35–44.
  • Malik, S., Sharma, N., Sharma, U. K., Singh, N. P., Bhushan, S., Sharma, M., Sinha, A. K., & Ahuja, P. S. (2010). Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants. Journal of Plant Physiology, 167(9), 749–756. https://doi.org/10.1016/j.jplph.2009.12.007
  • McMurry, L., Petrucci, R. E., & Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 3974–3977. https://doi.org/10.1073/pnas.77.7.3974
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. Journal of chem informatics, 3, 33.
  • Patel, C. N., Georrge, J. J., Modi, K. M., Narechania, M. B., Patel, D. P., Gonzalez, F. J., & Pandya, H. A. (2018). Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease. Journal of Biomolecular Structure & Dynamics, 36(15), 3938–3957. https://doi.org/10.1080/07391102.2017.1404931
  • Patel, C. N., Kumar, S. P., Modi, K. M., Soni, M. N., Modi, N. R., & Pandya, H. A. (2019). Cardiotonic steroids as potential Na+/K+-ATPase inhibitors - a computational study. Journal of Receptor and Signal Transduction Research, 39(3), 226–234. https://doi.org/10.1080/10799893.2019.1660893
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. 10.1002/jcc.20084
  • Podust, L. M., Poulos, T. L., & Waterman, M. R. (2001). Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3068–3073. https://doi.org/10.1073/pnas.061562898
  • Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-Gonzalez, M. I., Rojas, A., Terán, W., & Segura, A. (2002). Mechanisms of solvent tolerance in Gram-negative bacteria. Annual Review of Microbiology, 56, 743–768. https://doi.org/10.1146/annurev.micro.56.012302.161038
  • Reddy, S. V. G., Reddy, K. T., Kumari, V. V., & Basha, S. H. (2015). Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase. Journal of Biomolecular Structure & Dynamics, 33(12), 2695–2709. https://doi.org/10.1080/07391102.2015.1004834
  • Rolta, R., Kumar, V., Sourirajan, A., Upadhyay, N. K., & Dev, K. (2020). Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens. Journal of Ethnopharmacology, 257, 112867. https://doi.org/10.1016/j.jep.2020.112867
  • Rolta, R., Salaria, D., Kumar, V., Sourirajan, A., & Dev, K. (2020). Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: Research Square: In silico approach. https://doi.org/10.21203/rs.3.rs-30938/v1
  • Rolta, R., Sharma, A., Kumar, V., Sourirajan, A., Baumler, D. J., & Dev, K. (2018). Methanolic extracts of the rhizome of R. emodi act as bioenhancer of antibiotics against bacteria and fungi and antioxidant potential. Medicinal Plant Research, 8, 74–85. https://doi.org/10.5376/mpr.2018.08.0009
  • Rolta, R., Yadav, R., Salaria, D., Trivedi, S., Imran, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2020). In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1804457.
  • Rosell, R., & Crinó, L. (2002). Pemetrexed combination therapy in the treatment of non-small cell lung cancer. Seminars in Oncology, 29(2 Suppl 5), 23–29. https://doi.org/10.1053/sonc.2002.30768
  • Salaria, D., Rolta, R., Sharma, N., Dev, K., Sourirajan, A., & Kumar, V. (2020). In silico and In vitro evaluation of the anti-inflammatory and antioxidant potential of Cymbopogon citratus from North-western Himalayas. bioRxiv. https://doi.org/10.1101/2020.05.31.124982.
  • Schwarz, S., Wang, K., Yu, W., Sun, B., & Schwarz, W. (2011). Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Research, 90(1), 64–69. https://doi.org/10.1016/j.antiviral.2011.02.008
  • Shadrack, D. M., & Ndesendo, V. M. (2017). Molecular docking and ADMET study of emodin derivatives as anticancer inhibitors of NAT2, COX2 and TOP1 enzymes. Computational Molecular Bioscience, 07(01), 1–18. https://doi.org/10.4236/cmb.2017.71001
  • Sharma, R., Tiku, A. B., & Giri, A. (2017). Pharmacological properties of emodin—anthraquinone derivatives. Journal of Natural Products and Resources, 3, 97–101.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, R., Tiwari, T., & Chaturvedi, P. (2017). Rheum emodi Wall ex. meissn (Indian Rhubarb): Highly endangered medicinal herb. Journal of Medicinal Plants Studies, 5, 13–16.
  • Sogabe, S., Masubuchi, M., Sakata, K., Fukami, T. A., Morikami, K., Shiratori, Y., Ebiike, H., Kawasaki, K., Aoki, Y., Shimma, N., D’Arcy, A., Winkler, F. K., Banner, D. W., & Ohtsuka, T. (2002). Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. Chemistry & Biology, 9(10), 1119–1128. https://doi.org/10.1016/s1074-5521(02)00240-5
  • Sreelakshmi, V., Raj, N., & Abraham, A. (2017). Evaluation of the drug-like properties of kaempferol, chrysophanol and emodin and their interactions with EGFR tyrosine kinase – An in-silico approach. Natural Product Communications, 12(6), 1934578X1701200. https://doi.org/10.1177/1934578X1701200621
  • Tripathi, P., Siddiqui, S. S., Sharma, A., Johri, P., & Singh, A. (2018). Molecular docking studies of Curcuma Longa and aloe vera for their potential anticancer effects. Asian Journal of Pharmaceutical and Clinical Research, 11(4), 314–318. https://doi.org/10.22159/ajpcr.2018.v11i4.23995
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., & Saier, M. H. Jr, (1999). The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. Journal of Molecular Microbiology and Biotechnology, 1(1), 107–125.
  • Wuthi-Udomlert, M., Kupittayanant, P., & Gritsanapan, W. (2010). In vitro evaluation of antifungal activity of anthraquinone derivatives of Senna alata. Journal of Health Research, 24, 117–122.
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. 10.1093/bioinformatics/bty707
  • Yoshida, H., Kawai, F., Obayashi, E., Akashi, S., Roper, D. I., Tame, J. R., & Park, S. Y. (2012). Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the Apo and cefotaxime-bound forms. Journal of Molecular Biology, 423(3), 351–364. https://doi.org/10.1016/j.jmb.2012.07.012
  • Yuriev, E., & Ramsland, P. A. (2013). Latest developments in molecular docking: 2010-2011 in review. Journal of Molecular Recognition, 26(5), 215–239. 10.1002/jmr.2266
  • Yusuf, M. A., Singh, B. N., Sudheer, S., Kharwar, R. N., Siddiqui, S., Abdel-Azeem, A. M., Fernandes Fraceto, L., Dashora, K., & Gupta, V. K. (2019). Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules, 9, 68. https://doi.org/10.3390/biom9020068
  • Zgurskaya, H. I., & Nikaido, H. (2000). Multidrug resistance mechanisms: Drug efflux across two membranes. Molecular Microbiology, 37(2), 219–225. https://doi.org/10.1046/j.1365-2958.2000.01926.x
  • Zhou, Y. X., Xia, W., Yue, W., Peng, C., Rahman, K., & Zhang, H. (2015). Rhein: A review of pharmacological activities. Evidence-Based Complementary and Alternative Medicine : Ecam, 2015, 578107. https://doi.org/10.1155/2015/578107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.