420
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site

ORCID Icon, &
Pages 4250-4258 | Received 16 Sep 2020, Accepted 18 Nov 2020, Published online: 04 Dec 2020

References

  • Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838.
  • Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12(7), 878.
  • Änkö, M.-L., Müller-McNicoll, M., Brandl, H., Curk, T., Gorup, C., Henry, I., Ule, J., & Neugebauer, K. M. (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biology, 13(3), R17.
  • Barreau, C., Paillard, L., Méreau, A., & Osborne, H. B. (2006). Mammalian CELF/Bruno-like RNA-binding proteins: Molecular characteristics and biological functions. Biochimie, 88(5), 515–525.
  • Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.
  • Ben-Bassat, I., Chor, B., & Orenstein, Y. (2018). A deep neural network approach for learning intrinsic protein-RNA binding preferences. Bioinformatics (Oxford), 34(17), i638–i646.
  • Bernhart, S. H., Hofacker, I. L., & Stadler, P. F. (2006). Local RNA base pairing probabilities in large sequences. Bioinformatics (Oxford), 22(5), 614–615.
  • Blin, K., Dieterich, C., Wurmus, R., Rajewsky, N., Landthaler, M., & Akalin, A. (2015). DoRiNA 2.0-upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res, 43(Database issue), D160–D167.
  • Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PloS One, 12(6), e0177678.
  • Bowman, S. R. (2015). A large annotated corpus for learning natural language inference. arXiv:1508.05326.
  • Budach, S., & Marsico, A. (2018). pysster: Classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics (Oxford), 34(17), 3035–3037.
  • Chen, X., Li, A., Sun, B.-F., Yang, Y., Han, Y.-N., Yuan, X., Chen, R.-X., Wei, W.-S., Liu, Y., Gao, C.-C., Chen, Y.-S., Zhang, M., Ma, X.-D., Liu, Z.-W., Luo, J.-H., Lyu, C., Wang, H.-L., Ma, J., Zhao, Y.-L., … Yang, Y.-G. (2019). 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nature Cell Biology, 21(8), 978–990.
  • Cho, K. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078.
  • Chung, J. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. Computer Science. abs/1412.3555.
  • Dastych, M., Dastych, M., Novotná, H., & Číhalová, J. (2008). Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn’s disease. Digestive Diseases and Sciences, 53(10), 2789–2792.
  • De Guzman, R. N., Turner, R. B., & Summers, M. F. (1998). Protein-RNA recognition. Biopolymers, 48(2–3), 181–195.
  • Doller, A., Akool, E.-S., Huwiler, A., Müller, R., Radeke, H. H., Pfeilschifter, J., & Eberhardt, W. (2008). Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Molecular and Cellular Biology, 28(8), 2608–2625.
  • Ferre, F., Colantoni, A., & Helmer-Citterich, M. (2016). Revealing protein-lncRNA interaction. Briefings in Bioinformatics, 17(1), 106–116.
  • Foat, B. C., Morozov, A. V., & Bussemaker, H. J. (2006). Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics (Oxford), 22(14), e141–e149.
  • Fukunaga, T., Ozaki, H., Terai, G., Asai, K., Iwasaki, W., & Kiryu, H. (2014). CapR: Revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data. Genome Biology, 15(1), R16.
  • Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jungkamp, A.-C., Munschauer, M., Ulrich, A., Wardle, G. S., Dewell, S., Zavolan, M., & Tuschl, T. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1), 129–141.
  • Hassanzadeh, H. R., & Wang, M. D. (2016). DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE.
  • He, K. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Hiller, M., Pudimat, R., Busch, A., & Backofen, R. (2006). Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Research, 34(17), e117
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science (New York, NY), 313(5786), 504–507.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Hoell, J. I., Larsson, E., Runge, S., Nusbaum, J. D., Duggimpudi, S., Farazi, T. A., Hafner, M., Borkhardt, A., Sander, C., & Tuschl, T. (2011). RNA targets of wild-type and mutant FET family proteins. Nature Structural & Molecular Biology, 18(12), 1428–1431.
  • Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., Gan, J., Jiang, H., Jia, G.-F., Luo, C., & Yang, C.-G. (2015). Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Research, 43(1), 373–384.
  • Janssen, S., & Giegerich, R. (2015). The RNA shapes studio. Bioinformatics (Oxford), 31(3), 423–425.
  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.-G., & He, C. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 7(12), 885–887.
  • Jin, J., Jing, W., Lei, X.-X., Feng, C., Peng, S., Boris-Lawrie, K., & Huang, Y. (2011). Evidence that Lin28 stimulates translation by recruiting RNA helicase A to polysomes. Nucleic Acids Research, 39(9), 3724–3734.
  • Karayev, S. (2013). Recognizing image style. arXiv:1311.3715.
  • Kelley, D. E., Ibarbia, L., Daetz, R., Bittar, J. H., Risco, C. A., Santos, J. E. P., Ribeiro, E. S., & Galvão, K. N. (2016). Combined use of CIDR inserts, ultrasongraphy, and GnRH to identify and resynchronize nonpregnant cows and heifers 21 d after timed artificial insemination. Theriogenology, 85(2), 230–237.
  • Khalil, A. M., & Rinn, J. L. (2011). RNA–protein interactions in human health and disease. In Seminars in cell & developmental biology. Elsevier.
  • König, J., Zarnack, K., Luscombe, N. M., & Ule, J. (2012). Protein-RNA interactions: New genomic technologies and perspectives. Nature Reviews. Genetics, 13(2), 77–83.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems.
  • Li, X., Kazan, H., Lipshitz, H. D., & Morris, Q. D. (2014). Finding the target sites of RNA-binding proteins. Wiley Interdisciplinary Reviews RNA, 5(1), 111–130.
  • Livi, C. M., & Blanzieri, E. (2014). Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinformatics, 15(1), 123
  • Maticzka, D., Lange, S. J., Costa, F., & Backofen, R. (2014). GraphProt: Modeling binding preferences of RNA-binding proteins. Genome Biology, 15(1), R17.
  • Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A. V., Patil, D. P., Linder, B., Pickering, B. F., Vasseur, J.-J., Chen, Q., Gross, S. S., Elemento, O., Debart, F., Kiledjian, M., & Jaffrey, S. R. (2017). Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature, 541(7637), 371–375.
  • Mukherjee, N., Corcoran, D. L., Nusbaum, J. D., Reid, D. W., Georgiev, S., Hafner, M., Ascano, M., Tuschl, T., Ohler, U., & Keene, J. D. (2011). Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Molecular Cell, 43(3), 327–339.
  • Norris, J. D., Fan, D., Sherk, A., & McDonnell, D. P. (2002). A negative coregulator for the human ER. Molecular Endocrinology (Baltimore, MD), 16(3), 459–468.
  • Nutter, C. A., & Kuyumcu-Martinez, M. N. (2018). Emerging roles of RNA binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdisciplinary Reviews: RNA, 9(2), e1459.
  • Pan, X., Rijnbeek, P., Yan, J., & Shen, H.-B. (2018). Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics, 19(1), 511.
  • Park, S. (2016). deepMiRGene: Deep neural network based precursor microrna prediction. arXiv:1605.00017.
  • Qu, W., Wang, D., Feng, S., Zhang, Y., & Yu, G. (2017). A novel cross-modal hashing algorithm based on multimodal deep learning. Science China Information Sciences, 60(9), 092104.
  • Quang, D., & Xie, X. (2016). DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Research, 44(11), e107.
  • Ray, D., Kazan, H., Chan, E. T., Peña Castillo, L., Chaudhry, S., Talukder, S., Blencowe, B. J., Morris, Q., & Hughes, T. R. (2009). Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nature Biotechnology, 27(7), 667–670.
  • Sekhon, S., Jeon, C., Nakamura, M., Afifi, L., Yan, D., Wu, J. J., Liao, W., & Bhutani, T. (2018). Review of the mechanism of action of coal tar in psoriasis. Journal of Dermatological Treatment, 29(3), 230–232.
  • Sønderby, S. K. (2015). Convolutional LSTM networks for subcellular localization of proteins. International Conference on Algorithms for Computational Biology. Springer.
  • Steffen, P., Voss, B., Rehmsmeier, M., Reeder, J., & Giegerich, R. (2006). RNAshapes: An integrated RNA analysis package based on abstract shapes. Bioinformatics (Oxford), 22(4), 500–503.
  • Stražar, M., Žitnik, M., Zupan, B., Ule, J., & Curk, T. (2016). Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics (Oxford), 32(10), 1527–1535.
  • Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems.
  • Szegedy, C. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  • Tang, B., Pan, Z., Yin, K., & Khateeb, A. (2019). Recent advances of deep learning in bioinformatics and computational biology. Frontiers in Genetics, 10, 214.
  • Tran, H., Maurer, F., & Nagamine, Y. (2003). Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Molecular and Cellular Biology, 23(20), 7177–7188.
  • Treiber, T., Treiber, N., Plessmann, U., Harlander, S., Daiß, J.-L., Eichner, N., Lehmann, G., Schall, K., Urlaub, H., & Meister, G. (2017). A compendium of RNA-binding proteins that regulate microRNA biogenesis. Molecular Cell, 66(2), 270–284.e13.
  • Uren, P. J., Burns, S. C., Ruan, J., Singh, K. K., Smith, A. D., & Penalva, L. O. F. (2011). Genomic analyses of the RNA-binding protein Hu antigen R (HuR) identify a complex network of target genes and novel characteristics of its binding sites. Journal of Biological Chemistry, 286(43), 37063–37066.
  • Vlasova-St Louis, I., & Bohjanen, P. R. (2011). Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. Current Opinion in Genetics & Development, 21(4), 444–451.
  • Wächter, K., Köhn, M., Stöhr, N., & Hüttelmaier, S. (2013). Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biological Chemistry, 394(8), 1077–1090.
  • Wang, T., Hong, T., Huang, Y., Su, H., Wu, F., Chen, Y., Wei, L., Huang, W., Hua, X., Xia, Y., Xu, J., Gan, J., Yuan, B., Feng, Y., Zhang, X., Yang, C.-G., & Zhou, X. (2015). Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. Journal of the American Chemical Society, 137(43), 13736–13739.
  • Wei, J., Liu, F., Lu, Z., Fei, Q., Ai, Y., He, P. C., Shi, H., Cui, X., Su, R., Klungland, A., Jia, G., Chen, J., & He, C. (2018). Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Molecular Cell, 71(6), 973–985.e5.
  • Westhof, E., & Fritsch, V. (2011). The endless subtleties of RNA-protein complexes. Structure (London: 1993)), 19(7), 902–903.
  • Yang, Z. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
  • Zeng, H., Edwards, M. D., Liu, G., & Gifford, D. K. (2016). Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics (Oxford), 32(12), i121–i127.
  • Zhang, S., Hu, H., Jiang, T., Zhang, L., & Zeng, J. (2017). TITER: Predicting translation initiation sites by deep learning. Bioinformatics (Oxford), 33(14), i234–i242.
  • Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C., & Zeng, J. (2016). A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Research, 44(4), e32
  • Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R., & Qian, S.-B. (2015). Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature, 526(7574), 591–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.