344
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of sphingosine kinase 1 inhibitory potential of cinchonine and colcemid targeting anticancer therapy

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 6350-6362 | Received 22 Dec 2020, Accepted 24 Jan 2021, Published online: 10 Feb 2021

References

  • Beg, A., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Journal of Biomolecular Structure & Dynamics, 37(8), 2179–2192. https://doi.org/10.1080/07391102.2018.1479310
  • Belisario, J. C. (1965). Topical cytotoxic therapy for cutaneous cancer and precancer. Archives of Dermatology, 92, 293–303. https://doi.org/10.1001/archderm.1965.01600150083016
  • Belisario, J. C. (1969). Topical cytotoxic therapy of solar keratoses with 5–fluorouracil. Medical Journal of Australia, 2(23), 1136–1140. https://doi.org/10.5694/j.1326-5377.1969.tb107944.x
  • Buurman, E. T., Andrews, B., Gao, N., Hu, J., Keating, T. A., Lahiri, S., Otterbein, L. R., Patten, A. D., Stokes, S. S., & Shapiro, A. B. (2011). In vitro validation of acetyltransferase activity of GlmU as an antibacterial target in Haemophilus influenzae. The Journal of Biological Chemistry, 286(47), 40734–40742. https://doi.org/10.1074/jbc.M111.274068
  • Chen, J., Tang, H., Sysol, J. R., Moreno-Vinasco, L., Shioura, K. M., Chen, T., Gorshkova, I., Wang, L., Huang, L. S., Usatyuk, P. V., Sammani, S., Zhou, G., Raj, J. U., Garcia, J. G. N., Berdyshev, E., Yuan, J. X.-J., Natarajan, V., & Machado, R. F. (2014). The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 190(9), 1032–1043. https://doi.org/10.1164/rccm.201401-0121OC
  • Funaki, M., Kitabayashi, J., Shimakami, T., Nagata, N., Sakai, Y., Takegoshi, K., Okada, H., Murai, K., Shirasaki, T., Oyama, T., Yamashita, T., Ota, T., Takuwa, Y., Honda, M., & Kaneko, S. (2017). Peretinoin, an acyclic retinoid, inhibits hepatocarcinogenesis by suppressing sphingosine kinase 1 expression in vitro and in vivo. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-17285-2
  • Furusawa, S., Nakano, S., Wu, J., Sakaguchi, S., Takayanagi, M., Sasaki, K. I., & Satoh, S. (2001). Apoptosis induced by doxorubicin and cinchonine in P388 multidrug-resistant cells. The Journal of Pharmacy and Pharmacology, 53(7), 1029–1039. https://doi.org/10.1211/0022357011776289
  • Genne, P., Duchamp, O., Solary, E., Pinard, D., Belon, J., Dimanche-Boitrel, M., & Chauffert, B. (1994). Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukemic cell line K562/ADM. Leukemia, 8(1), 160–164.
  • Gonnet, P. (2007). P-SHAKE: A quadratically convergent SHAKE in O (n2). Journal of Computational Physics, 220(2), 740–750. https://doi.org/10.1016/j.jcp.2006.05.032
  • González-Peña, R. J., Braga, R. A., Cibrián, R. M., Salvador-Palmer, R., Gil-Benso, R., & San Miguel, T. (2014). Monitoring of the action of drugs in melanoma cells by dynamic laser speckle. Journal of Biomedical Optics, 19(5), 057008. https://doi.org/10.1117/1.JBO.19.5.057008
  • Gulzar, M., Ali, S., Khan, F. I., Khan, P., Taneja, P., & Hassan, M. I. (2019). Binding mechanism of caffeic acid and simvastatin to the integrin linked kinase for therapeutic implications: A comparative docking and MD simulation studies. Journal of Biomolecular Structure and Dynamics, 37(16), 4327–4337. https://doi.org/10.1080/07391102.2018.1546621
  • Gupta, K., & Panda, D. (2002). Perturbation of microtubule polymerization by quercetin through tubulin binding: A novel mechanism of its antiproliferative activity. Biochemistry, 41(43), 13029–13038. https://doi.org/10.1021/bi025952r
  • Gupta, P., Khan, F. I., Roy, S., Anwar, S., Dahiya, R., Alajmi, M. F., Hussain, A., Rehman, M. T., Lai, D., & Hassan, M. I. (2020). Functional implications of pH-induced conformational changes in the Sphingosine kinase 1. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 225, 117453. https://doi.org/10.1016/j.saa.2019.117453
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M., AlAjmi, M. F., Islam, A., Ahmad, F., & Hassan, M. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635. https://doi.org/10.1155/2020/2094635
  • Gupta, P., Mohammad, T., Dahiya, R., Roy, S., Noman, O. M. A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019). Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Scientific Reports, 9(1), 15. https://doi.org/10.1038/s41598-019-55199-3
  • Gupta, P., Mohammad, T., Khan, P., Alajmi, M. F., Hussain, A., Rehman, M. T., & Hassan, M. I. (2019). Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomedicine & Pharmacotherapy, 118, 109245. https://doi.org/10.1016/j.biopha.2019.109245
  • Haddadi, N., Lin, Y., Simpson, A. M., Nassif, N. T., & McGowan, E. M. (2017). Dicing and splicing sphingosine kinase and relevance to cancer. International Journal of Molecular Sciences, 18, 1891.
  • Hait, N. C., & Maiti, A. (2017). The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators of Inflammation, 2017, 4806541. https://doi.org/10.1155/2017/4806541
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hatoum, D., Haddadi, N., Lin, Y., Nassif, N. T., & McGowan, E. M. (2017). Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: Challenges for SphK as an oncotarget. Oncotarget, 8(22), 36898–36929. https://doi.org/10.18632/oncotarget.16370
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., Ahmad, F., & Jayaram, B. (2016). Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 34(3), 572–584. https://doi.org/10.1080/07391102.2015.1046934
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37–47. https://doi.org/10.2147/AABC.S70333
  • Huwiler, A., & Zangemeister-Wittke, U. (2018). The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacology & Therapeutics, 185, 34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5(24), 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Jin, Z. L., Yan, W., Qu, M., Ge, C. Z., Chen, X., & Zhang, S. F. (2018). Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells. Experimental and Therapeutic Medicine, 15(6), 5046–5050. https://doi.org/10.3892/etm.2018.6005
  • Jozefczuk, E., Guzik, T., & Siedlinski, M. (2020). Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacological Research, 156, 104793. https://doi.org/10.1016/j.phrs.2020.104793
  • Khan, P., Rahman, S., Queen, A., Manzoor, S., Naz, F., Hasan, G. M., Luqman, S., Kim, J., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and in vitro studies. Scientific Reports, 7(1), 15. https://doi.org/10.1038/s41598-017-09941-4
  • Khan, S., Bjij, I., Betz, R. M., & Soliman, M. E. (2018). Reversible versus irreversible inhibition modes of ERK2: A comparative analysis for ERK2 protein kinase in cancer therapy. Future Medicinal Chemistry, 10(9), 1003–1015. https://doi.org/10.4155/fmc-2017-0275
  • Khan, S., Bjij, I., & Soliman, M. E. (2019). Selective covalent inhibition of “allosteric Cys121” distort the binding of PTP1B enzyme: A novel therapeutic approach for cancer treatment. Cell Biochemistry and Biophysics, 77(3), 203–211. https://doi.org/10.1007/s12013-019-00882-5
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 38(15), 1–14.
  • Khoei, S. G., Sadeghi, H., Samadi, P., Najafi, R., & Saidijam, M. (2020). Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnology and Applied Biochemistry, 1-9.
  • Kikuchi, H., Yuan, B., Hu, X., & Okazaki, M. (2019). Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. American Journal of Cancer Research, 9(8), 1517–1535.
  • Kumar, V., Gupta, P., & Hassan, M. I. (2019). Mechanism and implications of traditional Chinese medicine in amyotrophic lateral sclerosis therapy. Journal of Proteins and Proteomics, 10, 1–17.
  • Kunisawa, J., Kurashima, Y., Gohda, M., Higuchi, M., Ishikawa, I., Miura, F., Ogahara, I., & Kiyono, H. (2007). Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood, 109(9), 3749–3756. https://doi.org/10.1182/blood-2006-08-041582
  • Lahlou, M. (2013). The success of natural products in drug discovery. Pharmacology & Pharmacy, 4(3), 17-31.
  • Lee, S.-Y., Rhee, Y.-H., Jeong, S.-J., Lee, H.-J., Lee, H.-J., Jung, M.-H., Kim, S.-H., Lee, E.-O., Ahn, K. S., Ahn, K. S., & Kim, S.-H. (2011). Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environmental Toxicology, 26(4), 424–431. https://doi.org/10.1002/tox.20568
  • Lee, T.-S., Cerutti, D. S., Mermelstein, D., Lin, C., LeGrand, S., Giese, T. J., Roitberg, A., Case, D. A., Walker, R. C., & York, D. M. (2018). GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features. Journal of Chemical Information and Modeling, 58(10), 2043–2050. https://doi.org/10.1021/acs.jcim.8b00462
  • Liu, Z., Huang, P., Law, S., Tian, H., Leung, W., & Xu, C. (2018). Preventive effect of curcumin against chemotherapy-induced side-effects. Frontiers in Pharmacology, 9, 1374. https://doi.org/10.3389/fphar.2018.01374
  • Lyles, R. H., Poindexter, C., Evans, A., Brown, M., & Cooper, C. R. (2008). Nonlinear model-based estimates of IC(50) for studies involving continuous therapeutic dose-response data. Contemporary Clinical Trials, 29(6), 878–886. https://doi.org/10.1016/j.cct.2008.05.009
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Melamed, J., & Darzynkiewicz, Z. (1985). RNA content and chromatin structure of CHO cells arrested in metaphase by colcemid. Cytometry, 6(4), 381–385. https://doi.org/10.1002/cyto.990060417
  • Merschjohann, K., Sporer, F., Steverding, D., & Wink, M. (2001). In vitro effect of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Medica, 67(7), 623–627. https://doi.org/10.1055/s-2001-17351
  • Mohammad, T., Arif, K., Alajmi, M. F., Hussain, A., Islam, A., Rehman, M. T., & Hassan, I. (2020). Identification of high-affinity inhibitors of pyruvate dehydrogenase kinase-3: Towards therapeutic management of cancer. Journal of Biomolecular Structure and Dynamics, 39(2), 1–9.
  • Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A. G., & Bishayee, A. (2019). Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 858, 172472. https://doi.org/10.1016/j.ejphar.2019.172472
  • Naiyer, A., Hassan, M. I., Islam, A., Sundd, M., & Ahmad, F. (2015). Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. Journal of Biomolecular Structure and Dynamics, 33(10), 2267–2284. https://doi.org/10.1080/07391102.2014.999354
  • Naqvi, A. A. T., Jairajpuri, D. S., Noman, O. M. A., Hussain, A., Islam, A., Ahmad, F., Alajmi, M. F., & Hassan, M. I. (2019). Evaluation of pyrazolopyrimidine derivatives as microtubule affinity regulating kinase 4 inhibitors: Towards therapeutic management of Alzheimer's disease. Journal of Biomolecular Structure and Dynamics, 38(13), 1–16.
  • Naz, H., Khan, P., Tarique, M., Rahman, S., Meena, A., Ahamad, S., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. International Journal of Biological Macromolecules, 96, 161–170. https://doi.org/10.1016/j.ijbiomac.2016.12.024
  • Paugh, S. W., Paugh, B. S., Rahmani, M., Kapitonov, D., Almenara, J. A., Kordula, T., Milstien, S., Adams, J. K., Zipkin, R. E., Grant, S., & Spiegel, S. (2008). A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood, 112(4), 1382–1391. https://doi.org/10.1182/blood-2008-02-138958
  • Perez, A., MacCallum, J. L., Brini, E., Simmerling, C., & Dill, K. A. (2015). Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations. Journal of Chemical Theory and Computation, 11(10), 4770–4779. https://doi.org/10.1021/acs.jctc.5b00662
  • Pitman, M. R., Costabile, M., & Pitson, S. M. (2016). Recent advances in the development of sphingosine kinase inhibitors. Cellular Signalling, 28(9), 1349–1363. https://doi.org/10.1016/j.cellsig.2016.06.007
  • Plano, D., Amin, S., & Sharma, A. K. (2014). Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors: Miniperspective. Journal of Medicinal Chemistry, 57(13), 5509–5524. https://doi.org/10.1021/jm4011687
  • Pyne, S., Adams, D. R., & Pyne, N. J. (2016). Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Progress in Lipid Research, 62, 93–106. https://doi.org/10.1016/j.plipres.2016.03.001
  • Qi, Y., Pradipta, A. R., Li, M., Zhao, X., Lu, L., Fu, X., Wei, J., Hsung, R. P., Tanaka, K., & Zhou, L. (2017). Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6. Journal of Experimental & Clinical Cancer Research, 36(1), 13. https://doi.org/10.1186/s13046-017-0502-8
  • Queen, A., Khan, P., Idrees, D., Azam, A., & Hassan, M. I. (2018). Biological evaluation of p-toluene sulphonylhydrazone as carbonic anhydrase IX inhibitors: An approach to fight hypoxia-induced tumors. International Journal of Biological Macromolecules, 106, 840–850. https://doi.org/10.1016/j.ijbiomac.2017.08.082
  • Roe, D. R., & Cheatham, T. E. III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roy, S., Mahapatra, A. D., Mohammad, T., Gupta, P., Alajmi, M. F., Hussain, A., Rehman, M., Datta, B., & Hassan, M. (2020b). Design and development of novel urea, sulfonyltriurea, and sulfonamide derivatives as potential inhibitors of sphingosine kinase 1. Pharmaceuticals, 13(6), 118. https://doi.org/10.3390/ph13060118
  • Roy, S., Mohammad, T., Gupta, P., Dahiya, R., Parveen, S., Luqman, S., Hasan, G. M., & Hassan, M. I. (2020a). Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: A chemopreventive role in lung cancer. ACS Omega, 5(34), 21550–21560. https://doi.org/10.1021/acsomega.0c02165
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schwalm, S., Pfeilschifter, J., & Huwiler, A. (2014). Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases. Basic & Clinical Pharmacology & Toxicology, 114(1), 44–49. https://doi.org/10.1111/bcpt.12103
  • Shah, B. H., Nawaz, Z., Virani, S. S., Ali, I. Q., Saeed, S. A., & Gilani, A. H. (1998). The inhibitory effect of cinchonine on human platelet aggregation due to blockade of calcium influx. Biochemical Pharmacology, 56(8), 955–960. https://doi.org/10.1016/S0006-2952(98)00094-X
  • Shitara, N., Kohno, T., & Takakura, K. (1976). New approach to brain tumour chemoradiotherapy with cellular synchronization by colcemid. Acta Neurochirurgica, 35(1–3), 123–133. https://doi.org/10.1007/BF01405940
  • Solary, E., Mannone, L., Moreau, D., Caillot, D., Casasnovas, R. O., Guy, H., Grandjean, M., Wolf, J. E., André, F., Fenaux, P., Canal, P., Chauffert, B., Wotawa, A., Bayssas, M., & Genne, P. (2000). Phase I study of cinchonine, a multidrug resistance reversing agent, combined with the CHVP regimen in relapsed and refractory lymphoproliferative syndromes. Leukemia, 14(12), 2085–2094. https://doi.org/10.1038/sj.leu.2401945
  • Song, K., Dai, L., Long, X., Wang, W., & Di, W. (2020). Follicle-stimulating hormone promotes the proliferation of epithelial ovarian cancer cells by activating sphingosine kinase. Scientific Reports, 10(1), 13. https://doi.org/10.1038/s41598-020-70896-0
  • Sun, M., Deng, R., Wang, Y., Wu, H., Zhang, Z., Bu, Y., & Zhang, H. (2020). Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sciences, 256, 117988. https://doi.org/10.1016/j.lfs.2020.117988
  • Tangadanchu, V. K. R., Jiang, H., Yu, Y., Graham, T. J., Liu, H., Rogers, B. E., Gropler, R., Perlmutter, J., & Tu, Z. (2020). Structure-activity relationship studies and bioactivity evaluation of 1, 2, 3-triazole containing analogues as a selective sphingosine kinase-2 inhibitors. European Journal of Medicinal Chemistry, 206(112713), 112713. https://doi.org/10.1016/j.ejmech.2020.112713
  • Thakur, P. K., & Hassan, M. I. (2011). Discovering a potent small molecule inhibitor for gankyrin using de novo drug design approach. International Journal of Computational Biology and Drug Design, 4(4), 373–386. https://doi.org/10.1504/IJCBDD.2011.044404
  • Verma, G., Khan, M. F., Akhtar, W., Alam, M. M., Akhter, M., Alam, O., Hasan, S. M., & Shaquiquzzaman, M. (2019). Pharmacophore modeling, 3D-QSAR, docking and ADME prediction of quinazoline based EGFR inhibitors. Arabian Journal of Chemistry, 12(8), 4815–4839. https://doi.org/10.1016/j.arabjc.2016.09.019
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, Z., Min, X., Xiao, S.-H., Johnstone, S., Romanow, W., Meininger, D., Xu, H., Liu, J., Dai, J., An, S., Thibault, S., & Walker, N. (2013). Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure (London, England: 1993), 21(5), 798–809. https://doi.org/10.1016/j.str.2013.02.025
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
  • Yang, Y., Liu, H., Du, J., Qin, J., & Yao, X. (2011). A combined molecular modeling study on a series of pyrazole/isoxazole based human Hsp90α inhibitors. Journal of Molecular Modeling, 17(12), 3241–3250. https://doi.org/10.1007/s00894-011-1011-x
  • Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10), 2626–2633. https://doi.org/10.1021/ci4002475
  • Yousuf, M., Shamsi, A., Khan, P., Shahbaaz, M., AlAjmi, M. F., Hussain, A., Hassan, G. M., Islam, A., Rizwanul Haque, Q. M., & Hassan, M. (2020). Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. International Journal of Molecular Sciences, 21(10), 3526. https://doi.org/10.3390/ijms21103526
  • Zhang, C., He, H., Zhang, H., Yu, D., Zhao, W., Chen, Y., & Shao, R. (2013). The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochemical and Biophysical Research Communications, 434(1), 35–41. https://doi.org/10.1016/j.bbrc.2013.03.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.