1,325
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2

ORCID Icon, & ORCID Icon
Pages 6381-6397 | Received 01 Aug 2020, Accepted 25 Jan 2021, Published online: 10 Feb 2021

References

  • Appleby, T. C., Perry, J. K., Murakami, E., Barauskas, O., Feng, J., Cho, A., Fox, D., Wetmore, D. R., McGrath, M. E., Ray, A. S., Sofia, M. J., Swaminathan, S., & Edwards, T. E. (2015). Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science (New York, NY), 347(6223), 771–775. https://doi.org/10.1126/science.1259210
  • Banerjee, A., Yang, W., Karplus, M., & Gregory, L. V. (2005). Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature, 434(7033), 612–618. https://doi.org/10.1038/nature03458
  • Basit, A., Ali, T., & Rehman, S. U. (2020). Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Journal of Biomolecular Structural Dynamics. https://doi.org/10.1080/07391102.2020.1768150
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. Journal of Chemical Physics, 98, 5648–5652.
  • Behera, B., Das, P., & Jena, N. R. (2019). Accurate base pair energies of artificially expanded genetic information systems (AEGIS): Clues for their mutagenic characteristics. The Journal of Physical Chemistry B, 123(31), 6728–6739. https://doi.org/10.1021/acs.jpcb.9b04653
  • Benner, S. A., Yang, Z., & Chen, F. (2011). Synthetic biology, tinkering biology, and artificial biology. What are we learning? Comptes Rendus: Chimie (Print), 14(4), 372–387. https://doi.org/10.1016/j.crci.2010.06.013
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Biondi, E., & Benner, S. A. (2018). Artificially expanded genetic information systems for new aptamer technologies. Biomedicines, 6(2), 53. https://doi.org/10.3390/biomedicines6020053
  • Bowers, K. J., Xu, E. C. H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, Florida, 2006, November, pp. 11–17.
  • Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B. R., Subbarao, K., & Collins, P. L. (2004). Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9804–9809. https://doi.org/10.1073/pnas.0403492101
  • Cava, C., Bertoli, G., & Castiglioni, I. (2020). In silico discovery of candidate drugs against COVID-19. Viruses, 12(4), 404. https://doi.org/10.3390/v12040404
  • Chaar, C. I. O., & Makuch, R. (2020). Emergency use authorization for remdesivir and its potential implications. Therapeutic Innovation and Regulatory Science. https://doi.org/10.1007/s43441-020-00212-5
  • Chien, M., Anderson, T. K., Jockusch, S., Tao, C., Li, X., Kumar, S., Russo, J. J., Kirchdoerfer, R. N., & Ju, J. (2020). Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. Journal of Proteome Research, 19(11), 4690–4697. https://doi.org/10.1021/acs.jproteome.0c00392.
  • Da Silva, S. J. R., Da Silva, C. T. A., Mendes, R. P. G., & Pena, L. (2020). Role of non-structural proteins in the pathogenesis of SARS-CoV-2. Journal of Medical Virology. https://doi.org/10.1002/jmv.25858.
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView,Version 5. Semichem Inc. Shawnee Mission.
  • Dizdaroglu, M., Coskun, E., & Jaruga, P. (2017). Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. Mutation Research/Reviews in Mutation Research, 771, 99–127. https://doi.org/10.1016/j.mrrev.2017.02.001
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Cioslowski, J., & Fox, D. J. (2009). Gaussian09, Revision A.1. Gaussian, Inc.
  • Gahtori, J., Pant, S., & Srivastava, H. K. (2019). Modeling antimalarial and antihuman African trypanosomiasis compounds: A ligand- and structure-based approaches. Molecular Diversity. https://doi.org/10.1007/s11030-019-10015-y.
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., & Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, NY), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498.
  • Georgiadis, M. M., Singh, I., Kellett, W. F., Hoshika, S., Benner, S. A., & Richards, N. G. (2015). Structural basis for a six nucleotide genetic alphabet. Journal of the American Chemical Society, 137(21), 6947–6955. https://doi.org/10.1021/jacs.5b03482
  • Glushakova, L., Sharma, N., Hoshika, S., Bradley, A. C., Bradley, K. M., Yang, Z., & Benner, S. A. (2015). Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA. Analytical Biochemistry, 489, 62–72. https://doi.org/10.1016/j.ab.2015.08.015
  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
  • Hartshorn, M. J., Verdonk, M. L., Chessari, G., Brewerton, S. C., Mooij, W. T. M., Mortenson, P. N., & Murray, C. W. (2007). Diverse, high-quality test set for the validation of protein–ligand docking performance. Journal of Medicinal Chemistry, 50(4), 726–741. https://doi.org/10.1021/jm061277y
  • Hawman, D. W., Haddock, E., Meade-White, K., Williamson, B., Hanley, P. W., Rosenke, K., Komeno, K., T., Furuta, Y., Gowen, B. B., & Feldmann, H. (2018). Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean–Congo hemorrhagic fever virus in mice. Antiviral Research, 157, 18–26. https://doi.org/10.1016/j.antiviral.2018.06.013
  • Hendaus, M. A. (2020). Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1767691
  • Hoshika, S., Leal, N. A., Kim, M.-J., Kim, M.-S., Karalkar, N. B., Kim, H.-J., Bates, A. M., Watkins, N. E., SantaLucia, H. A., Meyer, A. J., DasGupta, S., Piccirilli, J. A., Ellington, A. D., SantaLucia, J., Georgiadis, M. M., & Benner, S. A. (2019). Hachimoji DNA and RNA: A genetic system with eight building blocks. Science (New York, NY), 363(6429), 884–887. https://doi.org/10.1126/science.aat0971
  • Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503–517. https://doi.org/10.1007/s12038-012-9218-2
  • Jena, N. R. (2020a). Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact, 2, 100011, https://doi.org/10.1016/j.chphi.2021.100011
  • Jena, N. R. (2020b). Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Physical Chemistry Chemical Physics, 22(2), 919–931. https://doi.org/10.1039/C9CP05367K
  • Jena, N. R. (2020c). Role of different tautomers on the base-pairing abilities of some of the antiviral drugs used against COVID-19. Physical Chemistry Chemical Physics: PCCP, 22(48), 28115–28122. https://doi.org/10.1039/D0CP05297C
  • Jena, N. R., Das, P., Behera, B., & Mishra, P. C. (2018). Analogues of P and Z as efficient artificially expanded genetic information system. The Journal of Physical Chemistry. B, 122(34), 8134–8146. https://doi.org/10.1021/acs.jpcb.8b04207
  • Jockusch, S., Tao, C., Li, X., Anderson, T. K., Chien, M., Kumar, S., Russo, J. J., Kirchdoerfer, R. K., & Ju, J. (2020). A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Research, 180, 104857. https://doi.org/10.1016/j.antiviral.2020.104857
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Kadam, R. U., & Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 206–214. https://doi.org/10.1073/pnas.1617020114
  • Koulgi, S., Jani, V., Uppuladinne, M. V. N., Sonavane, U., & Joshi, R. (2020). Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Advances, 10(45), 26792–26803. https://doi.org/10.1039/D0RA04743K
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Mahanta, S. (2020). Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An in silico based approach. Journal of Biomolecular Structural Dynamics. https://doi.org/10.1080/07391102.2020.1768902
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Merritt, K. K., Bradley, K. M., Hutter, D., Matsuura, M. F., Rowold, D. J., & Benner, S. A. (2014). Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. total synthesis of a gene encoding kanamycin resistance. Beilstein Journal of Organic Chemistry, 10, 2348–2360. https://doi.org/10.3762/bjoc.10.245
  • Morris, J. H., Huang, C. C., Babbitt, P. C., & Ferrin, T. E. (2007). StructureViz: Linking cytoscape and UCSF chimera. Bioinformatics (Oxford, England), 23(17), 2345–2347. https://doi.org/10.1093/bioinformatics/btm329
  • Nayeem, S. M., Sohail, E. M., Sudhir, G. P., & Reddy, M. S. (2021). Computational and theoretical exploration for clinical suitability of Remdesivir drug to SARS-CoV-2. European Journal of Pharmacology, 890, 173642. https://doi.org/10.1016/j.ejphar.2020.173642
  • Ng, K. K. S., Arnold, J. E., & Cameron, C. E. (2008). Structure–function relationships among RNA-dependent RNA polymerases. Current Topics in Microbiology & Immunology, 320, 137–156.
  • Nissink, J. W. M., Murray, C., Hartshorn, M., Verdonk, M. L., Cole, J. C., & Taylor, R. (2002). A new test set for validating predictions of protein–ligand interaction. Proteins, 49(4), 457–471. https://doi.org/10.1002/prot.10232
  • Pant, S., Singh, M., Ravichandran, V., Murty, U. S. N., & Srivastava, H. (2020). Peptide-like and small-molecule inhibitors against COVID-19. Journal of Biomolecular Structural Dynamics. https://doi.org/10.1080/07391102.2020.1757510.
  • Peele, K. A., Krupanidhi, T. S. S., Sai, A. V., & Venketeswarulu, T. C. (2020). Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. Journal of Biomolecular Structural Dynamics. https://doi.org/10.1080/07391102.2020.1770127
  • Peterson, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. Journal of Chemical Physics, 103, 3668.
  • Posch, H. A., Hoover, W. G., & Vesely, F. J. (1986). Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Physical Review A: General Physics, 33(6), 4253–4265. https://doi.org/10.1103/physreva.33.4253
  • Pruijssers, A. J., George, A. S., Schäfer, A., Leist, S. R., Gralinksi, L. E., Dinnon, K. H., Yount, B. L., Agostini, M. L., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., Gully, K., Martinez, D. R., Brown, A. J., Graham, R. L., Perry, J. K., Du Pont, V., Pitts, J., & Sheahan, T. P. (2020). Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Reports, 32(3), 107940. https://doi.org/10.1016/j.celrep.2020.107940
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Sahin, A. R., Erdogan, A., Agaolglu, P. M., Dineri, Y., Cakirci, A. Y., Senel; R, M., Okyay, E. A., & Tasdogan, A. M. (2020). 2019 Novel coronavirus (COVID-19) outbreak: A review of the current literature. European Journal of Medical Oncology, 4, 1–7.
  • Schrödinger Release 2018-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2018. (2018). Maestro-Desmond interoperability tools. Schrödinger.
  • Sharma, P. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Biomolecular Structural Dynamics. https://doi.org/10.1080/07391102.2020.1753580
  • Sheahan, T. P., Sims, A. C., Leist, S. R., Schafer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., & Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11, 222 . https://doi.org/10.1038/s41467-019-13940-6.
  • Snijder, E. J., Decroly, E., & Ziebuhr, J. (2016). The non-structural proteins directing coronavirus RNA synthesis and processing. Advanced Virus Research, 96, 59–126.
  • The efficacy of LopinavirPlus Ritonavir and Arbidol against novel coronavirus Infection (ELACOI). https://clinicaltrials.gov/ct2/show/NCT04252885.
  • Therapeutic options for the 2019 novel coronavirus (2019-nCoV). https://www.nature.com/articles/d41573-020-00016-0.
  • Toukan Rahman, K. A. (1985). A molecular-dynamics study of atomic motions in water. Physical Review: B, Condensed Matter, 31(5), 2643–2648. https://doi.org/10.1103/physrevb.31.2643
  • Venkataraman, S., Prasad, B. V. L. S., & Selvarajan, R. (2018). RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 10(2), 76. https://doi.org/10.3390/v10020076
  • Voegel, J. J., & Benner, S. A. (1994). Nonstandard hydrogen bonding in duplex oligonucleotides. The base pair between an acceptor–donor–donor pyrimidine analog and a donor–acceptor–acceptor purine analog. Journal of the American Chemical Society, 116(15), 6929–6930. https://doi.org/10.1021/ja00094a055
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
  • Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., & Bavari, S. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381–385. https://doi.org/10.1038/nature17180
  • Wu, R., Wang, L., Kuo, H. C. D., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A. N. (2020). An update on current drugs treating COVID-19. Current Pharmacology Reports, 6(3), 56–70. https://doi.org/10.1007/s40495-020-00216-7
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., & Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science (New York, NY), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560.
  • Zhang, L., & Zhou, R. (2020). Structural basis of the potential binding mechanism of remdesivir to SARS-CoV-2 RNA-dependent RNA polymerase. The Journal of Physical Chemistry: B, 124(32), 6955–6962. https://doi.org/10.1021/acs.jpcb.0c04198
  • Zhang, L., Yang, Z., Sefah, K., Bradley, K. M., Hoshika, S., Kim, M.-J., Kim, H.-J., Zhu, G., Jiménez, E., Cansiz, S., Teng, I.-T., Champanhac, C., McLendon, C., Liu, C., Zhang, W., Gerloff, D. L., Huang, Z., Tan, W., & Benner, S. A. (2015). Evolution of functional six-nucleotide DNA. Journal of the American Chemical Society, 137(21), 6734–6737. https://doi.org/10.1021/jacs.5b02251
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.