1,906
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 6463-6476 | Received 23 Dec 2020, Accepted 31 Jan 2021, Published online: 15 Feb 2021

References

  • Aanouz, I., Belhassan, A., Khatabi, K. E., Lakhlifi, T., Idrissi, M. E., & Bouachrine, M. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1758790
  • Ahn, D.-G., Shin, H.-J., Kim, M.-H., Lee, S., Kim, H.-S., Myoung, J., Kim, B.-T., & Kim, S.-J. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of Microbiology and Biotechnology, 30(3), 313–324. https://doi.org/10.4014/jmb.2003.03011
  • Ali, S. A., Baloch, M., Ahmed, N., Ali, A. A. A., & Iqbal, A. (2020). The outbreak of coronavirus diseases 2019 (COVID-19) – An emerging global health threat. Journal of Infection and Public Health, 13, 644–646.
  • Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Choi, H. J., Song, J. H., & Kwon, D. H. (2012). Quercetin 3-rhamnoside exerts antiinfluenza A virus activity in mice. Phytotherapy Research: PTR, 26(3), 462–464. https://doi.org/10.1002/ptr.3529
  • FitzGerald, G. A. (2020). Misguided drug advice for COVID-19. Science (New York, N.Y.), 367(6485), 1434. https://doi.org/10.1126/science.abb8034
  • Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxy-chloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/jijantimicag.2020.105949
  • Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. https://doi.org/10.3390/md18040225
  • Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology, 38(4), 379–381. https://doi.org/10.1038/d41587-020-00003-1
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet (London, England), 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Huang, T.-J., Tsai, Y.-C., Chiang, S.-Y., Wang, G.-J., Kuo, Y.-C., Chang, Y.-C., Wu, Y.-Y., & Wu, Y.-C. (2014). Anti-viral effect of a compound isolated from Liriope platyphylla against hepatitis B virus in vitro. Virus Research, 192, 16–24. https://doi.org/10.1016/j.virusres.2014.07.015
  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Islam, A., Ahmed, A., Naqvi, I. H., & Parveen, S. (2020a). Emergence of deadly severe acute respiratory syndrome coronavirus-2 during 2019-2020. Virusdisease, 8, 1–9.
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., & Mamun, A. A. (2020b). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1761883.
  • Iyer, M., Jayaramayya, K., Subramaniam, M. D., Lee, S. B., Dayem, A. A., Cho, S. G., & Vellingiri, B. (2020). COVID-19: An update on diagnostic and therapeutic approaches. BMB Reports, 53(4), 191–205. https://doi.org/10.5483/BMBRep.2020.53.4.080
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 19, 1–14.
  • Lalani, S., & Poh, C. L. (2020). Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses, 12(2), 184. https://doi.org/10.3390/v12020184
  • Lauring, A. S., & Hodcroft, E. B. (2021). Genetic variants of SARS-CoV-2-what do they mean? Jama, https://jamanetwork.com/journals/jama/fullarticle/2775006.
  • Lin, L., Lu, L., Cao, W., & Li, T. (2020). Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerging Microbes and Infections, 9(1), 727–732. https://doi.org/10.1080/22221751.2020.1746199
  • Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020a). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27. https://doi.org/10.1186/s12929-019-0592-z
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020b). Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Luo, E., Zhang, D., Luo, H., Liu, B., Zhao, K., Zhao, Y., Bian, Y., & Wang, Y. (2020). Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): An empirical study from Wuhan, Hubei province, China. Chinese Medicine, 15, 34. https://doi.org/10.1186/s13020-020-00317-x
  • Mishra, P., Paital, B., Jena, S., Swain, S. S., Kumar, S., Yadav, M. K., Samanta, L., & Chainy, G. (2019). Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Scientific Reports, 9(1), 7408. https://doi.org/10.1038/s41598-019-43320-5
  • Mohammad, T., Shamsi, A., Anwar, S., Umair, M., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., & Hassan, M. I. (2020). Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 288, 198102. https://doi.org/10.1016/j.virusres.2020.198102
  • Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., & de Wit, E. (2020). A novel coronavirus emerging in China – Key questions for impact assessment. The New England Journal of Medicine, 382(8), 692–694. https://doi.org/10.1056/NEJMp2000929
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Pan, X., Chen, D., Xia, Y., Wu, X., Li, T., Ou, X., Zhou, L., & Liu, J. (2020). Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infectious Diseases, 20(4), 410–411. https://doi.org/10.1016/S1473-3099(20)30114-6
  • Pasetto, S., Pardi, V., & Murata, R. M. (2014). Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One, 9(12), e115323. https://doi.org/10.1371/journal.pone.0115323
  • Rastogi, S., Pandey, D. N., & Singh, R. H. (2020). COVID-19 Pandemic: A pragmatic plan for Ayurveda intervention. Journal of Ayurveda and Integrative Medicine. https://doi.org/10.1016/j.jaim.2020.04.002
  • Rege, A. A., & Chowdhary, A. S. (2013). Evaluation of some medicinal plants as putative HIV-protease inhibitors. Indian Drugs, 50, 24–28.
  • Russo, M., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2010). Phytochemicals in cancer prevention and therapy: Truth or dare? Toxins, 2(4), 517–551. https://doi.org/10.3390/toxins2040517
  • Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 323(18), 1824–1836. https://doi.org/10.1001/jama.2020.6019
  • Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach. Computer Methods and Programs in Biomedicine, 140, 185–194. https://doi.org/10.1016/j.cmpb.2016.12.013
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Das, M., Vedithi, S. C., & Padhy, R. N. (2020). Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Scientific Reports, 10(1), 6839. https://doi.org/10.1038/s41598-020-63913-9
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Sahoo, J., Vedithi, S. C., Mahapatra, N., Hussain, T., & Padhy, R. N. (2018). Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. Journal of Cellular Biochemistry, 119(12), 9838–9852. https://doi.org/10.1002/jcb.27304
  • Swain, S. S., Panda, S. K., & Luyten, W. (2020). Phytochemicals against SARS-CoV as potential drug leads. Biomedical Journal, https://doi.org/10.1016/j.bj.2020.12.002
  • Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. Nature Reviews Drug Discovery, 19(5), 305–306. https://doi.org/10.1038/d41573-020-00073-5
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93. pii: https://doi.org/10.3390/medicines5030093
  • Ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020a). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., & Liu, J. (2020b). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases, 39(9), 1629–1635. https://doi.org/10.1007/s10096-020-03899-4
  • Wang, J. (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling, 60(6), 3277–3286. https://doi.org/10.1021/acs.jcim.0c00179
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020c). Structural and functional basis of SARS-CoV-2 entry by using Human ACE2. Cell, 181(4), 894–904. https://doi.org/10.1016/j.cell.2020.03.045
  • WHO-Coronavirus disease (COVID-19) pandemic (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (Assessed on 30 September 2020).
  • WHO-Health systems respond to COVID-19 (2020). http://www.euro.who.int/data/assets/pdffile/0006/437469/TG2-CreatingSurgeAcuteICUcapacity-eng.pdf (Assessed on 30 October 2020).
  • Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017
  • Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. International Journal of Biological Sciences, 16(10), 1708–1717. https://doi.org/10.7150/ijbs.45538
  • Zhang, J., Xie, B., & Hashimoto, K. (2020). Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, 87, 59–73. https://doi.org/10.1016/j.bbi.2020.04.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.