431
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Homology modeling, docking, molecular dynamics and in vitro studies to identify Rhipicephalus microplus acetylcholinesterase inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6787-6797 | Received 20 Oct 2020, Accepted 08 Feb 2021, Published online: 01 Mar 2021

References

  • Ademosun, A. O., Oboh, G., Bello, F., & Ayeni1, P. O. (2016). Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase activities. Journal of Evidence-Based Complementary and Alternative Medicine, 21(4), 11–17. https://doi.org/10.1177/2156587215610032.
  • Allen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., Case, D. A., Kuntz, I. D., & Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry, 36 (15), 1132–1156. https://doi.org/10.1002/jcc.23905
  • Asokkumar, K., Madeswaran, A., & George, S. (2017). Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer's disease. International Journal of Biological Macromolecules, 95, 199–203. https://doi.org/10.1016/j.ijbiomac.2016.11.062
  • Avinash, B., Venu, R., Alpha Raj, M., Srinivasa, R. K., Srilatha, C., & Prasad, T. N. (2017). In vitro evaluation of acaricidal activity of novel green silver nanoparticles against deltamethrin resistance Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 237, 130–136. https://doi.org/10.1016/j.vetpar.2017.02.017
  • Bandara, K. M. U., & Karunaratne, S. H. P. (2017). Mechanisms of acaricide resistance in the cattle tick Rhipicephalus (Boophilus) microplus in Sri Lanka. Pesticide Biochemistry and Physiology, 139, 68–72. https://doi.org/10.1016/j.pestbp.2017.05.002.
  • Baruah, P., Basumatary, G., Yesylevskyy, S. O., Aguan, K., Bez, G., & Mitra, S. (2019). Novel coumarin derivatives as potent acetylcholinesterase inhibitors: Insight into efficacy, mode and site of inhibition. Journal of Biomolecular Structure and Dynamics, 37 (7), 1750–1765. https://doi.org/10.1080/07391102.2018.1465853
  • Benkert, P., Schwede, T., & Tosatto, S. C. E. (2009). QMEANclust: Estimation of protein model quality by combining a composite scoring function with structural density information. BMC Structural Biology, 9(0). https://doi.org/10.1186/1472-6807-9-35
  • BIOVIA, Dassault Systèmes (2015). Discovery studio visualizer (version 4.1). San Diego: Dassault Systèmes.
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, NY), 253 (5016), 164–170. https://doi.org/10.1126/science.1853201
  • Collin, M. A., Clarke, T. H., Ayoub, N. A., & Hayashi, C. Y. (2018). Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions. International Journal of Biological Macromolecules, 113, 829–840. https://doi.org/10.1016/j.ijbiomac.2018.02.032
  • Conceição, R. S., Carneiro, M. M., de, A., Reis, I. M. A., Branco, A., Vieira, I. J. C., Braz-Filho, R., & Botura, M. B. (2017). In vitro acaricide activity of Ocotea aciphylla (Nees) Mez. (Lauraceae) extracts and identification of the compounds from the active fractions. Ticks Borne Diseases, 8(2), 275–282. https://doi.org/10.1016/j.ttbdis.2016.11.013
  • Das, S., Santra, S., Rohman, M. A., Ray, M., Jana, M., & Singha Roy, A. (2019). An insight into the binding of 6-hydroxyflavone with hen egg white lysozyme: A combined approach of multi-spectroscopic and computational studies. Journal of Biomolecular Structure and Dynamics, 37(15), 4019–4034. https://doi.org/10.1080/07391102.2018.1535451.
  • Ding, F., Peng, W., & Peng, Y.-K. (2016). Biophysical exploration of protein–flavonols recognition: Effects of molecular property and conformational flexibility. Physical Chemistry Chemical Physics, 18(17), 11959–11971. https://doi.org/10.1039/C5CP07754K.
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: rom from 3D structure to function. Chemical Biology and Interaction, 187(1–3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9.
  • Ghosh, S., Tiwari, S. S., Srivastava, S., Kumar, S., Sharma, A. K., Nagar, G., Kumar, K. G., Kumar, R., & Rawat, A. K. (2015). In vitro acaricidal properties of Semecarpus anacardium fruit and Datura stramonium leaf extracts against acaricide susceptible (IVRI-I line) and resistant (IVRI-V line) Rhipicephalus (Boophilus) microplus. Research Veterinary Science, 101, 69–74. https://doi.org/10.1016/j.rvsc.2015.05.015.
  • Gomes, D. E. B., Silva, A. W. D., Lins, R. D., Pascutti, P. G., Soares, T. A. (2018). [Internet]. HbMap2Grace. Laboratory for Molecular Modeling and Dynamics. http://lmdm.biof.ufrj.br/software/hbmap2grace/index.html
  • Gupta, R. C. (2014). Carbamate pesticides. In Reference module in biomedical sciences: Encyclopedia of toxicology (3rd ed.) (pp. 661–664). https://doi.org/10.1016/B978-0-12-386454-3.00106-8.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. S. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. .
  • Islam, M. R., Zaman, A., Jahan, I., Chakravorty, R., & Chakraborty, S. (2013). In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer's disease. Journal of Young Pharmacy, 5(4), 173–179. https://doi.org/10.1016/j.jyp.2013.11.005.
  • Jain, P., Satapathy, T., & Pandey, R. K. (2020). Rhipicephalus microplus: A parasite threatening cattle health and consequences of herbal acaricides for upliftment of livelihood of cattle rearing communities in Chhattisgarh. Biocatalysis and Agricultural Biotechnology, 26, 101611. https://doi.org/10.1016/j.bcab.2020.101611.
  • Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M.-T. (2016). Computational approaches in target identification and drug discovery. Computational Structure and Biotechnology Journal, 14, 177–184. https://doi.org/10.1016/j.csbj.2016.04.004.
  • Khan, M. T., Orhan, I., Senol, F. S., Kartal, M., Sener, B., Dvorská, M., Smejkal, K., & Slapetová, T. (2009). Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chemical Biology and Interaction, 181(3), 383–389. https://doi.org/10.1016/j.cbi.2009.06.024.
  • Kim, Y. H., & Lee, S. H. (2018). Invertebrate acetylcholinesterases: Insights into their evolution and non-classical functions. Journal of Asia-Pacific Entomology, 21(1), 186–195. https://doi.org/10.1016/j.aspen.2017.11.017.
  • Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269–288. https://doi.org/10.1016/0022-2836(82)90153-X.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944.
  • Lee, S., Youn, K., Lim, G., Lee, J., & Jun, M. (2018). In silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules, 23(7), 1509. https://doi.org/10.3390/molecules23071509.
  • Lew-Tabor, A. E., & Rodriguez Valle, M. A. (2016). A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Borne Diseases, 7(4), 573–585. https://doi.org/10.1016/j.ttbdis.2015.12.012.
  • López, A. F. F., Martínez, O. M. M., & Hernández, H. F. C. (2021). Evaluation of amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking. Journal of Molecular Structure, 1225. https://doi.org/10.1016/j.molstruc.2020.129142
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Marimuthu, P., Lee, Y. J., Kim, B., & Seo, S. S. (2019). In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly. Journal of Biomolecular Structure and Dynamics, 37(2), 307–314. https://doi.org/10.1080/07391102.2018.1426046.
  • Melo, F., & Feytmans, E. (1998). Assessing protein structures with a non-local atomic interaction energy. Journal of Molecular Biology, 277(5), 1141–1152. https://doi.org/10.1006/jmbi.1998.1665
  • Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13(4), 505–524. https://doi.org/10.1002/jcc.540130412.
  • Müller, J., & Hemphill, A. (2016). Drug target identification in protozoan parasites. Experts Opinion in Drug Discovery, 11(8), 815–824. https://doi.org/10.1080/17460441.2016.1195945.
  • National Center for Biotechnology Information (NCBI)[Internet]. (1988). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov.
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. A. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pitchai, A., Rajaretinam, R. K., Mani, R., & Nagarajan, N. (2020). Molecular interaction of human acetylcholinesterase with trans-tephrostachin and derivatives for Alzheimer's disease. Heliyon, 6(9), e04930. https://doi.org/10.1016/j.heliyon.2020.
  • Rathnayake, L. K., & Northrup, S. H. (2016). Structure and mode of action of organophosphate pesticides: A computational study. Computational and Theoretical Chemistry, 1088, 9–23. https://doi.org/10.1016/j.comptc.2016.04.024.
  • Ravindran, R., Chithra, N. D., Deepa, P. E., Ajithkumar, K. G., Chandrasekhar, L., Sreelekha, K., Nair, S. N., Juliet, S., & Ghosh, S. (2017). In vitro effects of caffeic acid, nortriptyline, precocene I and quercetin against Rhipicephalus annulatus (Acari: Ixodidae). Experimental and Applied Acarology, 71(2), 183–193. https://doi.org/10.1007/s10493-017-0105-2.
  • Remya, C., Dileep, K. V., Tintu, I., Variyar, E. J., & Sadasivan, C. (2014). Flavanone glycosides as acetylcholinesterase inhibitors: Computational and experimental evidence. Indian Journal of Pharmaceutical Sciences, 76(6), 567–570. https://doi.org/10.4103/0250-474X.147247.
  • Ribeiro, V. L., Vanzella, C., Moysés, F. d S., Santos, J. C., Martins, J. R., von Poser, G. L., & Siqueira, I. R. (2012). Effect of Calea serrata Less. n-hexane extract on acetylcholinesterase of larvae ticks and brain Wistar rats. Veterinary Parasitology, 189 (2–4), 322–326. https://doi.org/10.1016/j.vetpar.2012.04.033.
  • Rostkowski, M., Olsson, M. H., Søndergaard, C. R., & Jensen, J. H. (2011). Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Structural Biology, 11, 6–6. https://doi.org/10.1186/1472-6807-11-6.
  • Ruyck, J., de, Brysbaert, G., Blossey, R., & Lensink, M. F. (2016). Molecular docking as a popular tool in drug design, an in silico travel. Advances and Applications in Bioinformatics and Chemistry: AABC, 9, 1–11. https://doi.org/10.2147/AABC.S105289.
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–447. https://doi.org/10.1093/nar/gkv315.
  • Schmidt, F., Matter, H., Hessler, G., & Czich, A. (2014). Predictive in silico off-target profiling in drug discovery. Future Medicinal Chemistry, 6(3), 295–317. https://doi.org/10.4155/fmc.13.202.
  • Senol, F. S., Ankli, A., Reich, E., & Orhan, I. E. (2016). HPTLC fingerprinting and cholinesterase inhibitory and metal-chelating capacity of various citrus cultivars and Olea europaea. Food Technology and Biotechnology, 54 (3), 275–281. https://doi.org/10.17113/ftb.54.03.16.4225.
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems and Biology, 7, 539. https://doi.org/10.1038/msb.2011.75.
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Crystallography of protein–ligand complexes. Acta Crystallographica: Section D, Biological Crystallography, 60 (Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679.
  • Sindhu, Z. U., Jonsson, N. N., & Iqbal, Z. (2012). Syringe test (modified larval immersion test): A new bioassay for testing acaricidal activity of plant extracts against Rhipicephalus microplus. Veterinary Parasitology, 188 (3–4), 362–367. https://doi.org/10.1016/j.vetpar.2012.03.021.
  • Temeyer, K. B., Pruett, J. H., & Olafson, P. U. (2010). Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 172 (1–2), 114–121. https://doi.org/10.1016/j.vetpar.2010.04.016.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26 (16), 1701–1718. https://doi.org/10.1002/jcc.20291.
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, 32(1), 5–6. https://doi.org/10.1016/B978-0-12-4095472.11133-3.
  • Whitehead, T. L. (2006). Molecular modeling: Basic principles and applications, 2nd Edition (Hans-Dieter Höltje, Wolfgang Sippl, Didier Rognan, and Gerd Folkers). Pharmaceutical and Medicinal Chemistry, 83, 116–118. .
  • Wright, F. C., & Ahrens, E. H. (1988). Cholinesterase insensitivity: A mechanism of resistance in Mexican strains of Boophilus microplus (Acari: Ixodidae) against coumaphos. Journal of Medical Entomology, 25(4), 234–239. https://doi.org/10.1093/jmedent/25.4.234.
  • Yu Lobanov, M., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195.
  • Zhang, L., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science: A Publication of the Protein Society, 7(5), 1201–1207. https://doi.org/10.1002/pro.5560070515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.