198
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phenothiazine as novel human superoxide dismutase modulators: discovery, optimization, and biological evaluation

, , , ORCID Icon & ORCID Icon
Pages 7070-7083 | Received 26 Jun 2020, Accepted 17 Feb 2021, Published online: 04 Mar 2021

References

  • Azizian, H., Nabati, F., Sharifi, A., Siavoshi, F., Mahdavi, M., & Amanlou, M. (2012). Large-scale virtual screening for the identification of new Helicobacter pylori urease inhibitor scaffolds. Journal of Molecular Modeling, 18(7), 2917–2927. https://doi.org/10.1007/s00894-011-1310-2
  • Banci, L., Bertini, I., Cantini, F., D'Amelio, N., & Gaggelli, E. (2006). Human SOD1 before harboring the catalytic metal: Solution structure of copper-depleted, disulfide-reduced form. The Journal of Biological Chemistry, 281(4), 2333–2337. https://doi.org/10.1074/jbc.M506497200
  • Bernhardt, V. G., Pinto, J. R. T., & Pai, V. R. (2010). Insilico docking for validation of drug leads on Superoxide dismutase of Homo sapiens and Plasmodium falciparum. Biomedical Research, 21, 214–220.
  • Cathcart, M. K. (2004). Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: Contributions to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(1), 23–28. https://doi.org/10.1161/01.ATV.0000097769.47306.12
  • ChemAxon Marvin was used for drawing, displaying and characterizing Chemical structures, substructures and reactions, Marvin 15.10.12.0 (version number). (2015). ChemAxon. http://www.chemaxon.com.
  • Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804.
  • Di Cesare Mannelli, L., Zanardelli, M., Landini, I., Pacini, A., Ghelardini, C., Mini, E., Bencini, A., Valtancoli, B., & Failli, P. (2016). Effect of the SOD mimetic MnL4 on in vitro and in vivo oxaliplatin toxicity: Possible aid in chemotherapy induced neuropathy. Free Radical Biology & Medicine, 93, 67–76. https://doi.org/10.1016/j.freeradbiomed.2016.01.023
  • DiDonato, M., Craig, L., Huff, M. E., Thayer, M. M., Cardoso, R. M. F., Kassmann, C. J., Lo, T. P., Bruns, C. K., Powers, E. T., Kelly, J. W., Getzoff, E. D., & Tainer, J. A. (2003). ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. Journal of Molecular Biology, 332(3), 601–615. https://doi.org/10.1016/s0022-2836(03)00889-1
  • Emerit, J., Edeas, M., & Bricaire, F. (2004). Neurodegenerative diseases and oxidative stress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 58(1), 39–46. https://doi.org/10.1016/j.biopha.2003.11.004
  • Getzoff, E. D., Cabelli, D. E., Fisher, C. L., Parge, H. E., Viezzoli, M. S., Banci, L., & Hallewell, R. A. (1992). Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature, 358(6384), 347–351. https://doi.org/10.1038/358347a0
  • Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., & Richardson, D. C. (1983). Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature, 306(5940), 287–290. https://doi.org/10.1038/306287a0
  • Ghosh, D. K., Kumar, A., & Ranjan, A. (2020). T54R mutation destabilizes the dimer of superoxide dismutase 1T54R by inducing steric clashes at the dimer interface. RSC Advances, 10(18), 10776–10788. https://doi.org/10.1039/C9RA09870D
  • Ghosh, D. K., Shrikondawar, A. N., & Ranjan, A. (2020). Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of Superoxide dismutase 1. Journal of Biomolecular Structure & Dynamics, 38(3), 647–659. https://doi.org/10.1080/07391102.2019.1584125
  • Hornberg, A., Logan, D. T., Marklund, S. L., & Oliveberg, M. (2007). The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase. Journal of Molecular Biology, 365(2), 333–342. https://doi.org/10.1016/j.jmb.2006.09.048
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking . Journal of Computational Chemistry, 32(5), 866–877. https://doi.org/10.1002/jcc.21666
  • Karunakaran, C., Zhang, H., Joseph, J., Antholine, W. E., & Kalyanaraman, B. (2005). Thiol oxidase activity of copper, zinc superoxide dismutase stimulates bicarbonate-dependent peroxidase activity via formation of a carbonate radical. Chemical Research in Toxicology, 18(3), 494–500. https://doi.org/10.1021/tx049747j
  • Ma, L., Ze, Y., Liu, J., Liu, H., Liu, C., Li, Z., Zhao, J., Yan, J., Duan, Y., Xie, Y., & Hong, F. (2009). Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 73(2), 330–335. https://doi.org/10.1016/j.saa.2009.02.041
  • Pantoliano, M. W., Valentine, J. S., Burger, A. R., & Lippard, S. J. (1982). A pH-dependent superoxide dismutase activity for zinc-free bovine erythrocuprein. Reexamination of the role of zinc in the holoprotein. Journal of Inorganic Biochemistry, 17(4), 325–341. https://doi.org/10.1016/s0162-0134(00)80093-8
  • Peddi, S. R., Sivan, S. K., & Mang, V. (2018). Molecular Dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors . Journal of Biomolecular Structure & Dynamics, 36(2), 486–503. https://doi.org/10.1080/07391102.2017.1281762
  • Perry, J. J., Shin, D. S., Getzoff, E. D., & Tainer, J. A. (2010). The structural biochemistry of the superoxide dismutases. Biochimica et Biophysica Acta, 1804(2), 245–262.
  • Polticelli, F., Battistoni, A., O'Neill, P., Rotilio, G., & Desideri, A. (1998). Role of the electrostatic loop charged residues in Cu, Zn superoxide dismutase. Protein Science : A Publication of the Protein Society, 7(11), 2354–2358. https://doi.org/10.1002/pro.5560071112
  • Rajic, Z., Tovmasyan, A., Spasojevic, I., Sheng, H., Lu, M., Li, A. M., Gralla, E. B., Warner, D. S., Benov, L., & Batinic-Haberle, I. (2012). A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radical Biology & Medicine, 52(9), 1828–1834. https://doi.org/10.1016/j.freeradbiomed.2012.02.006
  • Roberts, B. R., Tainer, J. A., Getzoff, E. D., Malencik, D. A., Anderson, S. R., Bomben, V. C., Meyers, K. R., Karplus, P. A., & Beckman, J. S. (2007). Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. Journal of Molecular Biology, 373(4), 877–890. https://doi.org/10.1016/j.jmb.2007.07.043
  • Ross, G., Rustenburg, A., Grinaway, P., Fass, J., & Chodera, J. (2018). Biomolecular Simulations under Realistic Macroscopic Salt Conditions. The Journal of Physical Chemistry B, 122 (21), 5466–5486. https://doi.org/10.1021/acs.jpcb.7b11734
  • Richardson, J. S. (1977). beta-Sheet topology and the relatedness of proteins. Nature, 268, 495–500
  • Schrödinger LLC. (2018). Schrödinger LLC 2018-4. Schrödinger, LLC.
  • Sherman, W., Day, T., Jacobson, M., Friesner, R., & Farid, R. (2006). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553. https://doi.org/10.1021/jm050540c
  • Soulère, L., Delplace, P., Davioud-Charvet, E., Py, S., Sergheraert, C., Périé, J., Ricard, I., Hoffmann, P., & Dive, D. (2003). Screening of Plasmodium falciparum iron superoxide dismutase inhibitors and accuracy of the SOD-assays. Bioorganic & Medicinal Chemistry, 11(23), 4941–4944. https://doi.org/10.1016/j.bmc.2003.09.011
  • Souza, P. T. C., Thallmair, S., Marrink, S. J., & Mera-Adasme, R. (2019). An allosteric pathway in copper, zinc superoxide dismutase unravels the molecular mechanism of the G93A amyotrophic lateral sclerosis-linked mutation. The Journal of Physical Chemistry Letters, 10(24), 7740–7744. − https://doi.org/10.1021/acs.jpclett.9b02868
  • Strange, R. W., Antonyuk, S. V., Hough, M. A., Doucette, P. A., Valentine, J. S., & Hasnain, S. S. (2006). Variable metallation of human superoxide dismutase: Atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes. Journal of Molecular Biology, 356(5), 1152–1162. https://doi.org/10.1016/j.jmb.2005.11.081
  • Tainer, J. A., Getzoff, E. D., Richardson, J. S., & Richardson, D. C. (1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306(5940), 284–287. https://doi.org/10.1038/306284a0
  • Teoh, M. L., Walasek, P. J., & Evans, D. H. (2003). Leporipoxvirus Cu, Zn-superoxide dismutase (SOD) homologs are catalytically inert decoy proteins that bind copper chaperone for SOD. The Journal of Biological Chemistry, 278(35), 33175–33184. https://doi.org/10.1074/jbc.M300644200
  • Weitner, T., Kos, I., Sheng, H., Tovmasyan, A., Reboucas, J. S., Fan, P., Warner, D. S., Vujaskovic, Z., Batinic-Haberle, I., & Spasojevic, I. (2013). Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radical Biology & Medicine, 58, 73–80. https://doi.org/10.1016/j.freeradbiomed.2013.01.006
  • Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology & Medicine, 33(3), 337–349. https://doi.org/10.1016/s0891-5849(02)00905-x
  • Zhang, H., Liu, Y., Liu, R., Liu, C., & Chen, Y. (2014). Molecular mechanism of lead-induced superoxide dismutase inactivation in zebrafish livers. Journal of Physical Chemistry B, 118, 14820–14826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.