200
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Xanthone glucoside 2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one binds to the ATP-binding pocket of glycogen synthase kinase 3β and inhibits its activity: implications in prostate cancer and associated cardiovascular disease risk

, , & ORCID Icon
Pages 7868-7884 | Received 07 Oct 2020, Accepted 09 Mar 2021, Published online: 26 Mar 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ali, S. K., Sneha, P., Priyadharshini Christy, J., Zayed, H., & George Priya Doss, C. (2017). Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. Journal of Biomolecular Structure & Dynamics, 35(12), 2714–2724. https://doi.org/10.1080/07391102.2016.1229634
  • Aoki, M., Yokota, T., Sugiura, I., Sasaki, C., Hasegawa, T., Okumura, C., Ishiguro, K., Kohno, T., Sugio, S., & Matsuzaki, T. (2004). Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3 beta. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 3), 439–446. https://doi.org/10.1107/s090744490302938x
  • Arfeen, M., Patel, R., Khan, T., & Bharatam, P. V. (2015). Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. Journal of Biomolecular Structure & Dynamics, 33(12), 2578–2593. https://doi.org/10.1080/07391102.2015.1063457
  • Arnost, M., Pierce, A., ter Haar, E., Lauffer, D., Madden, J., Tanner, K., & Green, J. (2010). 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3beta. Bioorganic & Medicinal Chemistry Letters, 20(5), 1661–1664. https://doi.org/10.1016/j.bmcl.2010.01.072
  • Baker, D. (2001). Comparison of upper-body strength and power between professional and college-aged rugby league players. Journal of Strength and Conditioning Research, 15(1), 30–35.
  • Baker, E. (2006). Hydrogen bonding in biological macromolecules. In International tables for crystallography (pp. 546–552). Springer.
  • Bell, E. W., & Zhang, Y. (2019). DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1), 40. https://doi.org/10.1186/s13321-019-0362-7
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Bertrand, J. A., Thieffine, S., Vulpetti, A., Cristiani, C., Valsasina, B., Knapp, S., Kalisz, H. M., & Flocco, M. (2003). Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. Journal of Molecular Biology, 333(2), 393–407. https://doi.org/10.1016/j.jmb.2003.08.031
  • Beshnova, D. A., Pereira, J., & Lamzin, V. S. (2017). Estimation of the protein-ligand interaction energy for model building and validation. Acta Crystallographica. Section D, Structural Biology, 73(Pt 3), 195–202. https://doi.org/10.1107/S2059798317003400
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Beurel, E., Grieco, S. F., & Jope, R. S. (2015). Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacology & Therapeutics, 148, 114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016
  • Bhardwaj, V. K., Singh, R., Sharma, J., Das, P., & Purohit, R. (2020). Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. Computer Methods and Programs in Biomedicine, 194, 105494. https://doi.org/10.1016/j.cmpb.2020.105494
  • Bhat, R., Xue, Y., Berg, S., Hellberg, S., Ormö, M., Nilsson, Y., Radesäter, A.-C., Jerning, E., Markgren, P.-O., Borgegård, T., Nylöf, M., Giménez-Cassina, A., Hernández, F., Lucas, J. J., Díaz-Nido, J., & Avila, J. (2003). Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. The Journal of Biological Chemistry, 278(46), 45937–45945. https://doi.org/10.1074/jbc.M306268200
  • Bhatia, N., Santos, M., Jones, L. W., Beckman, J. A., Penson, D. F., Morgans, A. K., & Moslehi, J. (2016). Cardiovascular effects of androgen deprivation therapy for the treatment of prostate cancer: ABCDE steps to reduce cardiovascular disease in patients with prostate cancer. Circulation, 133(5), 537–541. https://doi.org/10.1161/CIRCULATIONAHA.115.012519
  • Bustanji, Y., Taha, M. O., Almasri, I. M., Al-Ghussein, M. A., Mohammad, M. K., & Alkhatib, H. S. (2009). Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(3), 771–778. https://doi.org/10.1080/14756360802364377
  • Castro-Alvarez, A., Costa, A. M., & Vilarrasa, J. (2017). The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules, 22(1), 136. https://doi.org/10.3390/molecules22010136
  • Chang, L., Graham, P. H., Ni, J., Hao, J., Bucci, J., Cozzi, P. J., & Li, Y. (2015). Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Critical Reviews in Oncology/Hematology, 96(3), 507–517. https://doi.org/10.1016/j.critrevonc.2015.07.005
  • Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., & Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3 beta: Structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 105(6), 721–732. https://doi.org/10.1016/s0092-8674(01)00374-9
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11
  • DeLano, W. (2002). PyMOL: An open-source molecular graphics tool. DeLano Scientific San Carlos.
  • Domoto T., Pyko, I. V., Furuta, T., Miyashita, K., Uehara, M., & Shimasaki, T. (2016). Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Science, 107(10), 1363–1372. https://doi.org/10.1111/cas.13028
  • Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein-ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9
  • Ehianeta, T. S., Laval, S., & Yu, B. (2016). Bio- and chemical syntheses of mangiferin and congeners. BioFactors (Oxford, England), 42(5), 445–458. https://doi.org/10.1002/biof.1279
  • Eldar-Finkelman, H., & Martinez, A. (2011). GSK-3 inhibitors: Preclinical and clinical focus on CNS. Frontiers in Molecular Neuroscience, 4, 32. https://doi.org/10.3389/fnmol.2011.00032
  • Fang, X., Yu, S. X., Lu, Y., Bast, R. C., Jr., Woodgett, J. R., & Mills, G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11960–11965. https://doi.org/10.1073/pnas.220413597
  • Ferreira de Freitas, R., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/c7md00381a
  • Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W., & Roach, P. J. (1987). Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. The Journal of Biological Chemistry, 262(29), 14042–14048.
  • Frame, S., Cohen, P., & Biondi, R. M. (2001). A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Molecular Cell, 7(6), 1321–1327. https://doi.org/10.1016/s1097-2765(01)00253-2
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. Epub 2015/04/04. https://doi.org/10.1517/17460441.2015.1032936
  • Goc, A., Al-Husein, B., Katsanevas, K., Steinbach, A., Lou, U., Sabbineni, H., DeRemer, D. L., & Somanath, P. R. (2014). Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget, 5(3), 775–787. https://doi.org/10.18632/oncotarget.1770
  • Grimes, C. A., & Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Progress in Neurobiology, 65(4), 391–426. https://doi.org/10.1016/s0301-0082(01)00011-9
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011a). Fast docking using the CHARMM force field with EADock DSS. Journal of Computational Chemistry, 32(10), 2149–2159. https://doi.org/10.1002/jcc.21797
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011b). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), W270–W277. https://doi.org/10.1093/nar/gkr366
  • Guo, F., Huang, C., Liao, X., Wang, Y., He, Y., Feng, R., Li, Y., & Sun, C. (2011). Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Molecular Nutrition & Food Research, 55(12), 1809–1818. https://doi.org/10.1002/mnfr.201100392
  • Guo, F., Li, S. C., Wang, L., & Zhu, D. (2012). Protein-protein binding site identification by enumerating the configurations. BMC Bioinformatics, 13, 158. https://doi.org/10.1186/1471-2105-13-158
  • Guo, Y., Gupte, M., Umbarkar, P., Singh, A. P., Sui, J. Y., Force, T., & Lal, H. (2017). Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 110, 109–120. https://doi.org/10.1016/j.yjmcc.2017.07.011
  • Henriksen, E. J., & Dokken, B. B. (2006). Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Current Drug Targets, 7(11), 1435–1441. https://doi.org/10.2174/1389450110607011435
  • Hermida, M. A., Dinesh Kumar, J., & Leslie, N. R. (2017). GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Advances in Biological Regulation, 65, 5–15. https://doi.org/10.1016/j.jbior.2017.06.003
  • Hess, B., & van der Vegt, N. F. (2006). Hydration thermodynamic properties of amino acid analogues: A systematic comparison of biomolecular force fields and water models. The Journal of Physical Chemistry. B, 110(35), 17616–17626. https://doi.org/10.1021/jp0641029
  • Hughes, K., Nikolakaki, E., Plyte, S. E., Totty, N. F., & Woodgett, J. R. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. The EMBO Journal, 12(2), 803–808. https://doi.org/10.1002/j.1460-2075.1993.tb05715.x
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Imran, M., Arshad, M. S., Butt, M. S., Kwon, J. H., Arshad, M. U., & Sultan, M. T. (2017). Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids in Health and Disease, 16(1), 84. https://doi.org/10.1186/s12944-017-0449-y
  • Jin, J., Tian, R., Pasculescu, A., Dai, A. Y., Williton, K., & Taylor, L. (2016). Mutational analysis of glycogen synthase kinase 3β protein kinase together with kinome-wide binding and stability studies suggests context-dependent recognition of kinases by the chaperone heat shock protein 90. Molecular and Cellular Biology, 36(6), 1007–1018. https://doi.org/10.1128/mcb.01045-15
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaminski, G. A., Stern, H. A., Berne, B. J., Friesner, R. A., Cao, Y. X., Murphy, R. B., Zhou, R., & Halgren, T. A. (2002). Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. Journal of Computational Chemistry, 23(16), 1515–1531. https://doi.org/10.1002/jcc.10125
  • Kramer, T., Schmidt, B., & Lo Monte, F. (2012). Small-molecule inhibitors of GSK-3: Structural insights and their application to Alzheimer's disease models. International Journal of Alzheimer's Disease, 2012, 381029. https://doi.org/10.1155/2012/381029
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lal, H., Ahmad, F., Woodgett, J., & Force, T. (2015). The GSK-3 family as therapeutic target for myocardial diseases. Circulation Research, 116(1), 138–149. https://doi.org/10.1161/CIRCRESAHA.116.303613
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lee, M. R., Tsai, J., Baker, D., & Kollman, P. A. (2001). Molecular dynamics in the endgame of protein structure prediction. Journal of Molecular Biology, 313(2), 417–430. https://doi.org/10.1006/jmbi.2001.5032
  • Lemkul, J. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package, v1.0. Living Journal of Computational Molecular Science, 1(1). https://doi.org/10.33011/livecoms.1.1.5068
  • Levine, G. N., D'Amico, A. V., Berger, P., Clark, P. E., Eckel, R. H., Keating, N. L., Milani, R. V., Sagalowsky, A. I., Smith, M. R., & Zakai, N. (2010). Androgen-deprivation therapy in prostate cancer and cardiovascular risk: A science advisory from the American Heart Association, American Cancer Society, and American Urological Association: Endorsed by the American Society for Radiation Oncology. CA: A Cancer Journal for Clinicians, 60(3), 194–201. https://doi.org/10.3322/caac.20061
  • Li, B., Thrasher, J. B., & Terranova, P. (2015). Glycogen synthase kinase-3: A potential preventive target for prostate cancer management. Urologic Oncology, 33(11), 456–463. https://doi.org/10.1016/j.urolonc.2015.05.006
  • Linding, R., Jensen, L. J., Ostheimer, G. J., van Vugt, M. A. T. M., Jørgensen, C., Miron, I. M., Diella, F., Colwill, K., Taylor, L., Elder, K., Metalnikov, P., Nguyen, V., Pasculescu, A., Jin, J., Park, J. G., Samson, L. D., Woodgett, J. R., Russell, R. B., Bork, P., Yaffe, M. B., & Pawson, T. (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129(7), 1415–1426. https://doi.org/10.1016/j.cell.2007.05.052
  • Luo, G., Chen, L., Burton, C. R., Xiao, H., Sivaprakasam, P., Krause, C. M., Cao, Y., Liu, N., Lippy, J., Clarke, W. J., Snow, K., Raybon, J., Arora, V., Pokross, M., Kish, K., Lewis, H. A., Langley, D. R., Macor, J. E., & Dubowchik, G. M. (2016). Discovery of Isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase kinase-3 inhibitors. Journal of Medicinal Chemistry, 59(3), 1041–1051. https://doi.org/10.1021/acs.jmedchem.5b01550
  • Mancinelli, R., Carpino, G., Petrungaro, S., Mammola, C. L., Tomaipitinca, L., Filippini, A., Facchiano, A., Ziparo, E., & Giampietri, C. (2017). Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidative Medicine and Cellular Longevity, 2017, 4629495–4622018. https://doi.org/10.1155/2017/4629495
  • Mangangcha, I. R., Malik, M. Z., Kucuk, O., Ali, S., & Singh, R. K. B. (2019). Identification of key regulators in prostate cancer from gene expression datasets of patients. Scientific Reports, 9(1), 16420. https://doi.org/10.1038/s41598-019-52896-x
  • Martin, S. A., Souder, D. C., Miller, K. N., Clark, J. P., Sagar, A. K., Eliceiri, K. W., Puglielli, L., Beasley, T. M., & Anderson, R. M. (2018). GSK3β regulates brain energy metabolism. Cell Reports, 23(7), 1922–1931.e4. https://doi.org/10.1016/j.celrep.2018.04.045
  • Martinez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Matkowski, A., Kus, P., Goralska, E., & Wozniak, D. (2013). Mangiferin - A bioactive xanthonoid, not only from mango and not just antioxidant. Mini - Reviews in Medicinal Chemistry, 13(3), 439–455.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology (Clifton, N.J.), 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
  • Nagini, S., Sophia, J., & Mishra, R. (2019). Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer. Seminars in Cancer Biology, 56, 25–36. https://doi.org/10.1016/j.semcancer.2017.12.010
  • Ng, L., Kaur, P., Bunnag, N., Suresh, J., Sung, I., Tan, Q., Gruber, J., & Tolwinski, N. (2019). WNT Signaling in Disease. Cells, 8(8), 826–807. https://doi.org/10.3390/cells8080826
  • Pandey, M. K., & DeGrado, T. R. (2016). Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics, 6(4), 571–593. https://doi.org/10.7150/thno.14334
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Reddy, M. R., Reddy, C. R., Rathore, R. S., Erion, M. D., Aparoy, P., Reddy, R. N., & Reddanna, P. (2014). Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Current Pharmaceutical Design, 20(20), 3323–3337. https://doi.org/10.2174/13816128113199990604
  • Redenti, S., Marcovich, I., De Vita, T., Pérez, C., De Zorzi, R., Demitri, N., Perez, D. I., Bottegoni, G., Bisignano, P., Bissaro, M., Moro, S., Martinez, A., Storici, P., Spalluto, G., Cavalli, A., & Federico, S. (2019). A triazolotriazine-based dual GSK-3β/CK-1δ ligand as a potential neuroprotective agent presenting two different mechanisms of enzymatic inhibition. ChemMedChem, 14(3), 310–314. https://doi.org/10.1002/cmdc.201800778
  • Saitoh, M., Kunitomo, J., Kimura, E., Iwashita, H., Uno, Y., Onishi, T., Uchiyama, N., Kawamoto, T., Tanaka, T., Mol, C. D., Dougan, D. R., Textor, G. P., Snell, G. P., Takizawa, M., Itoh, F., & Kori, M. (2009). 2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta with good brain permeability. Journal of Medicinal Chemistry, 52(20), 6270–6286. https://doi.org/10.1021/jm900647e
  • Sarker, D., Reid, A. H., Yap, T. A., & de Bono, J. S. (2009). Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(15), 4799–4805. https://doi.org/10.1158/1078-0432.CCR-08-0125
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–7. https://doi.org/10.1093/nar/gki481
  • Shinkafi, T. S., Kaushik, A., Mahmood, A., Tiwari, A. K., Alam, M. M., & Akhter, M. (2019). Computational prediction and experimental validation of the activator function of C2-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone on pancreatic and hepatic hexokinase. Journal of Biomolecular Structure and Dynamics, 38(10), 2976-2987. https://doi.org/10.1080/07391102.2019.1650829
  • Sneha, P., & Doss, C. G. (2016). Molecular dynamics: New Frontier in personalized medicine. Advances in Protein Chemistry and Structural Biology, 102, 181–224. https://doi.org/10.1016/bs.apcsb.2015.09.004
  • Stamos, J. L., Chu, M. L., Enos, M. D., Shah, N, & Weis, W. I. (2014). Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Elife, 3, e01998. https://doi.org/10.7554/eLife.01998
  • Sun, H., Jiang, Y. J., Yu, Q. S., Luo, C. C., & Zou, J. W. (2008). Effect of mutation K85R on GSK-3beta: Molecular dynamics simulation. Biochemical and Biophysical Research Communications, 377(3), 962–965. https://doi.org/10.1016/j.bbrc.2008.10.096
  • Sutherland, C. (2011). What are the bona fide GSK3 substrates? International Journal of Alzheimer's Disease, 2011, 505607. https://doi.org/10.4061/2011/505607
  • ter Haar, E., Coll, J. T., Austen, D. A., Hsiao, H. M., Swenson, L., & Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nature Structural Biology, 8(7), 593–596. https://doi.org/10.1038/89624
  • Tront, J. S., Huang, Y., Fornace, A. J., Fornace, A. A., Hoffman, B., & Liebermann, D. A. (2010). Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Research, 70(23), 9671–9681. https://doi.org/10.1158/0008-5472.Can-10-2177
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D. Jr. (2012). Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. https://doi.org/10.1021/ci3003649
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics: PCCP, 18(18), 12964–12975. https://doi.org/10.1039/c6cp01555g
  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106(3), 765–784. https://doi.org/10.1021/ja00315a051
  • Zhang, C., Vasmatzis, G., Cornette, J. L., & DeLisi, C. (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 267(3), 707–726. https://doi.org/10.1006/jmbi.1996.0859
  • Zhang, D., & Lazim, R. (2017). Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Scientific Reports, 7, 44651. https://doi.org/10.1038/srep44651
  • Zhu, J., Wu, Y., Xu, L., & Jin, J. (2020). Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3β (GSK3β) with pyrazine ATP-competitive inhibitors by 3DQSAR, molecular docking, molecular dynamics simulation and free energy calculations. Current Computer-Aided Drug Design, 16(1), 17–30. https://doi.org/10.2174/1573409915666190708102459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.