327
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Multiple machine learning, molecular docking, and ADMET screening approach for identification of selective inhibitors of CYP1B1

, , , &
Pages 7975-7990 | Received 04 Dec 2020, Accepted 15 Mar 2021, Published online: 26 Mar 2021

References

  • Androutsopoulos, V. P., Spyrou, I., Ploumidis, A., Papalampros, A. E., Kyriakakis, M., Delakas, D., Spandidos, D. A., & Tsatsakis, A. M. (2013). Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors. PLoS One, 8(12), e82487. https://doi.org/10.1371/0082487
  • Androutsopoulos, V. P., Tsatsakis, A. M., & Spandidos, D. A. (2009). Cytochrome P450 CYP1A1: Wider roles in cancer progression and prevention. BMC Cancer, 9(1), 187. https://doi.org/10.1186/1471-2407-9-187
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Bruno, R. D., & Njar, V. C. (2007). Targeting cytochrome P450 enzymes: A new approach in anti-cancer drug development. Bioorganic & Medicinal Chemistry, 15(15), 5047–5060. https://doi.org/10.1016/j.bmc.2007.05.046
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7
  • Chun, Y.-J., Lim, C., Ohk, S. O., Lee, J. M., Lee, J. H., Choi, S., & Kim, S. (2011). Trans-stilbenoids: Potent and selective inhibitors for human cytochrome P450 1B1. MedChemComm, 2(5), 402–405. https://doi.org/10.1039/c0md00242a
  • Cui, J., Meng, Q., Zhang, X., Cui, Q., Zhou, W., & Li, S. (2015). Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. Journal of Medicinal Chemistry, 58(8), 3534–3547. https://doi.org/10.1021/acs.jmedchem.5b00265
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., Niaz, M. S., & Ramesh, A. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 29(4), 324–357. https://doi.org/10.1080/10590501.2011.629974
  • Don, M.-J., Lewis, D. F., Wang, S.-Y., Tsai, M.-W., & Ueng, Y.-F. (2003). Effect of structural modification on the inhibitory selectivity of rutaecarpine derivatives on human CYP1A1, CYP1A2, and CYP1B1. Bioorganic & Medicinal Chemistry Letters, 13(15), 2535–2538. https://doi.org/10.1016/S0960-894X(03)00469-4
  • Dong, J., Wang, Z., Cui, J., Meng, Q., & Li, S. (2020). Synthesis and structure-activity relationship studies of α-naphthoflavone derivatives as CYP1B1 inhibitors. European Journal of Medicinal Chemistry, 187, 111938. https://doi.org/10.1016/j.ejmech.2019.111938
  • Doostdar, H., Burke, M. D., & Mayer, R. T. (2000). Bioflavonoids: Selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology, 144(1-3), 31–38. https://doi.org/10.1016/S0300-483X(99)00215-2
  • Dutour, R., Cortés-Benítez, F., Roy, J., & Poirier, D. (2017). Structure-based design and synthesis of new estrane-pyridine derivatives as cytochrome P450 (CYP) 1B1 inhibitors. ACS Medicinal Chemistry Letters, 8(11), 1159–1164. DOI: 10.1021/7b00265
  • Dutour, R., & Poirier, D. (2017). Inhibitors of cytochrome P450 (CYP) 1B1. European Journal of Medicinal Chemistry, 135, 296–306. https://doi.org/10.1016/j.ejmech.2017.04.042
  • Dutour, R., Roy, J., Cortés-Benítez, F., Maltais, R., & Poirier, D. (2018). Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of a-ring substituted estrane derivatives: Design, synthesis, inhibitory activity, and selectivity. Journal of Medicinal Chemistry, 61(20), 9229–9245. https://doi.org/10.1021/acs.jmedchem.8b00907
  • Fernandez-Lozano, C., Cuinas, R. F., Seoane, J. A., Fernandez-Blanco, E., Dorado, J., & Munteanu, C. R. (2015). Classification of signaling proteins based on molecular star graph descriptors using machine learning models. Journal of Theoretical Biology, 384, 50–58. https://doi.org/10.1016/j.jtbi.2015.07.038
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Green, D. V. (2008). Virtual screening of chemical libraries for drug discovery. Expert Opinion on Drug Discovery, 3(9), 1011–1026. https://doi.org/10.1517/17460441.3.9.1011
  • Groom, C. R., Bruno, I. J., Lightfoot, M. P., & Ward, S. C. (2016). The Cambridge structural database. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 72(Pt 2), 171–179. https://doi.org/10.1107/S2052520616003954
  • Gupta, S., Jadaun, A., Kumar, H., Raj, U., Varadwaj, P. K., & Rao, A. (2015). Exploration of new drug-like inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: A docking and simulation study. Journal of Biomolecular Structure & Dynamics, 33(11), 2421–2441. https://doi.org/10.1080/07391102.2015.1051114
  • Horley, N. J., Beresford, K. J. M., Chawla, T., McCann, G. J. P., Ruparelia, K. C., Gatchie, L., Sonawane, V. R., Williams, I. S., Tan, H. L., Joshi, P., Bharate, S. S., Kumar, V., Bharate, S. B., & Chaudhuri, B. (2017). Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: Overcoming cisplatin resistance in CYP1B1-overexpressing lines. European Journal of Medicinal Chemistry, 129, 159–174. https://doi.org/10.1016/j.ejmech.2017.02.016
  • Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in generalized MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4), 111–122.
  • Kim, S., Ko, H., Park, J. E., Jung, S., Lee, S. K., & Chun, Y.-J. (2002). Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. Journal of Medicinal Chemistry, 45(1), 160–164. https://doi.org/10.1021/jm010298j
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kubo, M., Yamamoto, K., & Itoh, T. (2019). Design and synthesis of selective CYP1B1 inhibitor via dearomatization of α-naphthoflavone. Bioorganic & Medicinal Chemistry, 27(2), 285–304. https://doi.org/10.1016/j.bmc.2018.11.045
  • Kuhn, M. (2015). Caret: classification and regression training. ascl.ascl: 1505.1003. https://doi.org/10.1016/j.bmc.2018.11.045
  • Kumar, R., & Gupta, D. (2016). Identification of CYP1B1-specific candidate inhibitors using combination of in silico screening, integrated knowledge-based filtering, and molecular dynamics simulations. Chemical Biology & Drug Design, 88(5), 730–739. https://doi.org/10.1111/cbdd.12803
  • Lin, H., Han, L., Yap, C., Xue, Y., Liu, X., Zhu, F., & Chen, Y. (2007). Prediction of factor Xa inhibitors by machine learning methods. Journal of Molecular Graphics & Modelling, 26(2), 505–518. https://doi.org/10.1016/j.jmgm.2007.03.003
  • Longadge, R., & Dongre, S. (2013). Class imbalance problem in data mining review. arXiv:13051707. https://doi.org/10.1016/j.jmgm.2007.03.003
  • McFadyen, M. C., McLeod, H. L., Jackson, F. C., Melvin, W. T., Doehmer, J., & Murray, G. I. (2001). Cytochrome P450 CYP1B1 protein expression: A novel mechanism of anticancer drug resistance. Biochemical Pharmacology, 62(2), 207–212. https://doi.org/10.1016/S0006-2952(01)00643-8
  • McFadyen, M. C., & Murray, G. I. (2005). Cytochrome P450 1B1: a novel anticancer therapeutic target.
  • Meng, Q., Wang, Z., Cui, J., Cui, Q., Dong, J., Zhang, Q., & Li, S. (2018). Design, synthesis, and biological evaluation of cytochrome P450 1B1 targeted molecular imaging probes for colorectal tumor detection. Journal of Medicinal Chemistry, 61(23), 10901–10909. DOI: 10.1517/14796694.1.2.259
  • Mikstacka, R., Baer‐Dubowska, W., Wieczorek, M., & Sobiak, S. (2008). Thiomethylstilbenes as inhibitors of CYP1A1, CYP1A2 and CYP1B1 activities. Molecular Nutrition & Food Research, 52(S1), S77–S83. https://doi.org/10.1002/mnfr.200700202
  • Mikstacka, R., Przybylska, D., Rimando, A. M., & Baer‐Dubowska, W. (2007). Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Molecular Nutrition & Food Research, 51(5), 517–524. https://doi.org/10.1002/mnfr.200600135
  • Mikstacka, R., Rimando, A. M., Dutkiewicz, Z., Stefański, T., & Sobiak, S. (2012). Design, synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1, CYP1A2 and CYP1B1. Bioorganic & Medicinal Chemistry, 20(17), 5117–5126. https://doi.org/10.1016/j.bmc.2012.07.012
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Pan, Y., Huang, N., Cho, S., & MacKerell, A. D. (2003). Consideration of molecular weight during compound selection in virtual target-based database screening. Journal of Chemical Information and Computer Sciences, 43(1), 267–272. https://doi.org/10.1021/ci020055f
  • Reid, J. M., Kuffel, M. J., Miller, J. K., Rios, R., & Ames, M. M. (1999). Metabolic activation of dacarbazine by human cytochromes P450: The role of CYP1A1, CYP1A2, and CYP2E1. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5(8), 2192–2197.
  • Rochat, B., Zoete, V., Grosdidier, A., von Grünigen, S., Marull, M., & Michielin, O. (2008). In vitro biotransformation of imatinib by the tumor expressed CYP1A1 and CYP1B1. Biopharmaceutics & Drug Disposition, 29(2), 103–118. https://doi.org/10.1002/bdd.598
  • Sansen, S., Yano, J. K., Reynald, R. L., Schoch, G. A., Griffin, K. J., Stout, C. D., & Johnson, E. F. (2007). Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. The Journal of Biological Chemistry, 282(19), 14348–14355. https://doi.org/10.1074/jbc.M611692200
  • Shimada, T., Hayes, C. L., Yamazaki, H., Amin, S., Hecht, S. S., Guengerich, F. P., & Sutter, T. R. (1996). Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Research, 56(13), 2979–2984.
  • Shimada, T., Yamazaki, H., Foroozesh, M., Hopkins, N. E., Alworth, W. L., & Guengerich, F. P. (1998). Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chemical Research in Toxicology, 11(9), 1048–1056. DOI: 10.1021/tx980090 + 
  • Siddique, M. U. M., McCann, G. J., Sonawane, V., Horley, N., Williams, I. S., Joshi, P., Bharate, S. B., Jayaprakash, V., Sinha, B. N., & Chaudhuri, B. (2016). Biphenyl urea derivatives as selective CYP1B1 inhibitors. Organic & Biomolecular Chemistry, 14(38), 8931–8936. https://doi.org/10.1039/c6ob01506a
  • Spink, D. C., Spink, B. C., Cao, J. Q., DePasquale, J. A., Pentecost, B. T., Fasco, M. J., Li, Y., & Sutter, T. R. (1998). Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis, 19(2), 291–298. https://doi.org/10.1093/carcin/19.2.291
  • Takemura, H., Itoh, T., Yamamoto, K., Sakakibara, H., & Shimoi, K. (2010). Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorganic & Medicinal Chemistry, 18(17), 6310–6315. https://doi.org/10.1016/j.bmc.2010.07.020
  • Tan, H. L. (2006). Selective inhibitors of the cytochrome P450 enzyme CYP1B1. De Montfort University.
  • Ulug, M. E. (1995). Artificial neural network method and architecture. Google Patents.
  • Wahi, D., Jamal, S., Goyal, S., Singh, A., Jain, R., Rana, P., & Grover, A. (2015). Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents. Systems and Synthetic Biology, 9(1-2), 33–43. https://doi.org/10.1007/s11693-015-9162-1
  • Walsh, A. A., Szklarz, G. D., & Scott, E. E. (2013). Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. The Journal of Biological Chemistry, 288(18), 12932–12943. https://doi.org/10.1074/jbc.M113.452953
  • Wang, A., Savas, U., Stout, C. D., & Johnson, E. F. (2011). Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. The Journal of Biological Chemistry, 286(7), 5736–5743. https://doi.org/10.1074/jbc.M110.204420
  • Xie, S., Tu, Z., Xiong, J., Kang, G., Zhao, L., Hu, W., Tan, H., Tembo, K. M., Ding, Q., Deng, X., Huang, J., & Zhang, Q. (2017). CXCR4 promotes cisplatin-resistance of non-small cell lung cancer in a CYP1B1-dependent manner. Oncology Reports, 37(2), 921–928. https://doi.org/10.3892/or.2016.5289
  • Xue, Y., Li, H., Ung, C., Yap, C., & Chen, Y. (2006). Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chemical Research in Toxicology, 19(8), 1030–1039. https://doi.org/10.1021/tx0600550
  • Xue, Y., Yap, C. W., Sun, L. Z., Cao, Z. W., Wang, J., & Chen, Y. Z. (2004). Prediction of P-glycoprotein substrates by a support vector machine approach. Journal of Chemical Information and Computer Sciences, 44(4), 1497–1505. https://doi.org/10.1021/ci049971e
  • Yao, X., Panaye, A., Doucet, J., Chen, H., Zhang, R., Fan, B., Liu, M., & Hu, Z. (2005). Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks. Analytica Chimica Acta, 535(1-2), 259–273. https://doi.org/10.1016/j.aca.2004.11.066
  • Yuan, L.-F., Ding, C., Guo, S.-H., Ding, H., Chen, W., & Lin, H. (2013). Prediction of the types of ion channel-targeted conotoxins based on radial basis function network. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 27(2), 852–856. https://doi.org/10.1016/j.tiv.2012.12.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.