238
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Dissecting druggability of ABC transporter proteins in Mycobacterium species through network modeling

, , &
Pages 8365-8374 | Received 01 Feb 2021, Accepted 26 Mar 2021, Published online: 23 Apr 2021

References

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank. A computer-based archival file for macromolecular structures. European Journal of Biochemistry, 80(2), 319–324. https://doi.org/10.1111/j.1432-1033.1977.tb11885.x
  • Berman HM., Westbrook J., Feng Z., Gilliland G., Bhat TN., Weissig H., Shindyalov IN and Bourne PE. (2000) The Protein Data BankNucleic Acids Res. Jan 1;28(1):235-42. doi:10.1093/nar/28.1.235
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006, November 11–17). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida.
  • Bradley, P., Misura, K. M., & Baker, D. (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742), 1868–1871. https://doi.org/10.1126/science.1113801
  • Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537–544. https://doi.org/10.1038/31159
  • De Voss, J. J., Rutter, K., Schroeder, B. G., Su, H., Zhu, Y., & Barry, C. E. (2000). The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proceedings of the National Academy of Sciences, 97(3), 1252–1257. https://doi.org/10.1073/pnas.97.3.1252
  • Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34, W116–W118. https://doi.org/10.1093/nar/gkl282
  • Gobin, J., & Horwitz, M. A. (1996). Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. Journal of Experimental Medicine, 183(4), 1527–1532. https://doi.org/10.1084/jem.183.4.1527
  • Hameed, S., Pal, R., & Fatima, Z. (2015). Iron acquisition mechanisms: Promising target against Mycobacterium tuberculosis. The Open Microbiology Journal, 9, 91–97. https://doi.org/10.2174/1874285801509010091
  • Hatzios, S. K., & Bertozzi, C. R. (2011). The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathogens, 7(7), e1002036. https://doi.org/10.1371/journal.ppat.1002036
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–W531. https://doi.org/10.1093/nar/gkh468
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lew, J. M., Kapopoulou, A., Jones, L. M., & Cole, S. T. (2011). TubercuList-10 years after. Tuberculosis (Edinburgh, Scotland), 91(1), 1–7. https://doi.org/10.1016/j.tube.2010.09.008
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Ojha, A. K., Baughn, A. D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2008). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Molecular Microbiology, 69(1), 164–174. https://doi.org/10.1111/j.1365-2958.2008.06274.x
  • Pavan, F. R., da S Maia, P. I., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G., & Leite, C. Q. F. (2010). Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti-Mycobacterium tuberculosis activity and cytotoxicity. European Journal of Medicinal Chemistry, 45(5), 1898–1905. https://doi.org/10.1016/j.ejmech.2010.01.028
  • Pinto, R., Tang, Q. X., Britton, W. J., Leyh, T. S., & Triccas, J. A. (2004). The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology (Reading, England), 150(Pt 6), 1681–1686. https://doi.org/10.1099/mic.0.26894-0
  • Ratledge, C. (2004). Iron, mycobacteria and tuberculosis. Tuberculosis, 84(1–2), 110–130. https://doi.org/10.1016/j.tube.2003.08.012
  • Reddy, P. V., Puri, R. V., Chauhan, P., Kar, R., Rohilla, A., Khera, A., & Tyagi, A. K. (2013). Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. Journal of Infectious Diseases, 208(8), 1255–1265. https://doi.org/10.1093/infdis/jit250
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.