410
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

DFT computational study of trihalogenated aniline derivative’s adsorption onto graphene/fullerene/fullerene-like nanocages, X12Y12 (X = Al, B, and Y = N, P)

, , , ORCID Icon &
Pages 8630-8643 | Received 20 Jan 2021, Accepted 03 Apr 2021, Published online: 20 Apr 2021

References

  • Aghaei, M., Ramezanitaghartapeh, M., Javan, M., Hoseininezhad-Namin, M. S., Mirzaei, H., Rad, A. S., Soltani, A., Sedighi, S., Lup, A. G. K., Khori, V., Mahon, P. J., & Heidari, F. (2021). Investigations of adsorption behavior and anti-inflammatory activity of glycine functionalized Al12N12 and Al12ON11 fullerene-like cages. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 246, 119023. https://doi.org/10.1016/j.saa.2020.119023
  • Ahamadi, R., Sarvestani, M. R. J., & Sadeghi, B. (2018). Computational study of the fullerene effects on the properties of 16 different drugs: A review. International Journal of Nano Dimension, 9, 325–335.
  • Albrecht, M. G., & Creighton, J. A. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 99(15), 5215–5217. https://doi.org/10.1021/ja00457a071
  • Ali, I., Uddin, R., Salim, K., Rather, M. A., Wani, W. A., & Haque, A. (2011). Advances in Nano drugs for cancer chemotherapy. Current Cancer Drug Targets, 11, 135–146. https://doi.org/10.2174/156800911794328493
  • Al-Jumaili, A., Alancherry, S., Bazaka, K., & Jacob, M. (2017). Review on the antimicrobial properties of carbon nanostructures. Materials, 10(9), 1066. https://doi.org/10.3390/ma10091066
  • Almuqrin, A. H., Al-Otaibi, J. S., Mary, Y. S., Mary, Y. S., & Thomas, R. (2020). Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1790420
  • Almuqrin, A. H., Al-Otaibi, J. S., Mary, Y. S., Thomas, R., Kaya, S., & Işın, D. Ö. (2020). Spectral analysis and detailed quantum mechanical investigation of some acetanilide analogues and their self-assemblies with graphene and fullerene. Journal of Molecular Modeling, 26(9), 254. https://doi.org/10.1007/s00894-020-04485-3
  • Al-Otaibi, J. S. (2020). Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 235, 118333. https://doi.org/10.1016/j.saa.2020.118333
  • Al-Otaibi, J. S., Almuqrin, A. H., Mary, Y. S., & Mary, Y. S. (2020). Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. Journal of Molecular Structure, 1217, 128388. https://doi.org/10.1016/j.molstruc.2020.128388
  • Al-Otaibi, J. S., Almuqrin, A. H., Mary, Y. S., Mary, Y. S., & Van Alsenoy, C. (2020). DFT and molecular docking studies of self-assembly of sulfone analogues and graphene. Journal of Molecular Modeling, 26(10), 273. https://doi.org/10.1007/s00894-020-04546-7
  • Al-Otaibi, J. S., Mary, Y. S., Armakovic, S., & Thomas, R. (2020). Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: Detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. Journal of Molecular Structure, 1202, 127316. https://doi.org/10.1016/j.molstruc.2019.127316
  • Al-Otaibi, J. S., Mary, Y. S., Mary, Y. S., Kaya, S., & Erkan, S. (2020). Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene. Journal of Molecular Liquids, 317, 113924. https://doi.org/10.1016/j.molliq.2020.113924
  • Al-Otaibi, J. S., Mary, Y. S., Thomas, R., & Kaya, S. (2020). Detailed electronic structure, physic-chemical properties, excited state properties, virtual bioactivity screening and SERS analysis of three guanine based antiviral drugs, valacyclovir HCl hydrate, acyclovir and ganciclovir. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2020.1773876
  • Alsabbagh, A. M., Aldous, K. M., Narang, R. S., & Keefe, P. O. (1992). Formation of brominated dioxins and brominated phenazines from pyrolyses of 2,4,6-tribormoaniline and N-(tribromophenyl)maleimide. Chemosphere, 24(11), 1625–1632. https://doi.org/10.1016/0045-6535(92)90405-G
  • Alvarez-Puebla, R. A., & Liz-Marzan, L. M. (2010). Environmental applications of Plasmon assisted Raman scattering. Energy & Environmental Science, 3, 1011–1017. https://doi.org/10.1039/C002437F
  • Amatore, C., Farsang, G., Maisonhaute, E., & Simon, P. (1999). Voltammetric investigation of the anodic dimerizationof p-halogenoanilines in DMF: Reactivity of their electrogenerated cation radicals. Journal of Electroanalytical Chemistry, 462(1), 55–62. https://doi.org/10.1016/S0022-0728(98)00389-1
  • Asadi-Ojaee, S. S., Mirabi, A., Rad, A. S., Movaghgharnezhad, S., & Hallajian, S. (2019). Removal of Bismuth(III) ions from water solution using a cellulose based nanocomposite: A detailed study by DFT and experimental insights. Journal of Molecular Liquids, 295, 111723. https://doi.org/10.1016/j.molliq.2019.111723
  • Badawi, H. M., Forner, W., & Al-Saadi, A. A. (2009). Structural stability, NH2 inversion and vibrational assignments of 2,4,6-trichloroaniline and 2,3,5,6-tetrachloroaniline. Journal of Molecular Structure, 938(13), 41–47. https://doi.org/10.1016/j.molstruc.2009.09.001
  • Betz, R., & Klufers, P. (2008). 2,4,6-Trifluoro-aniline. Acta Crystallographica Section E: Structure Reports Online, 64(Pt 11), o2242. https://doi.org/10.1107/S1600536808035083
  • Cagardova, D., Michalik, M., Klein, E., Lukes, V., & Markovic, Z. (2019). DFT and ab initio calculations of ionization potentials, proton affinities and bond dissociation enthalpies of aromatic compounds. Acta Chimica Slovaca, 12(2), 225–240. https://doi.org/10.2478/acs-2019-0032
  • Canamares, M. V., & Lombardi, J. R. (2015). Raman, SERS and DFT of Mauve dye: Adsorption of Ag nanoparticles. The Journal of Physical Chemistry C, 119, 150615154915001–150615154914303. https://doi.org/10.1021/acs.jpcc.5b02619
  • Chaudhary, J., Bower, J., & Corbin, I. R. (2019). Lipoprotein drug delivery vehicles for cancer: Rationale and Reason. International Journal of Molecular Sciences, 20(24), 6327. https://doi.org/10.3390/ijms20246327
  • Chimene, D., Alge, D. L., & Gaharwar, A. K. (2015). Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Advanced Materials, 27(45), 7261–7284. https://doi.org/10.1002/adma.201502422
  • Christensen, A. T., & Stromme, K. O. (1969). The crystal structure of 2,4,6-tribromoaniline. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25(4), 657–664. https://doi.org/10.1107/S0567740869002780
  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry: Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30–46. https://doi.org/10.1016/j.tifs.2011.10.006
  • Dadashi Firouzjaei, M., Akbari Afkhami, F., Rabbani Esfahani, M., Turner, C. H., & Nejati, S. (2020). Experimental and molecular dynamics study of dye removal from water by a graphene oxide copper metal organic frame works nanocomposite. Journal of Water Process Engineering, 34, 101180. https://doi.org/10.1016/j.jwpe.2020.101180
  • Das, R. S., & Agrawal, Y. K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vibrational Spectroscopy, 57(2), 163–176. https://doi.org/10.1016/j.vibspec.2011.08.003
  • De Almeida Azevedo, D., Lacorte, S., Vinhas, T., Viana, P., & Barcelo, D. (2000). Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography-mass spectrometry and liquid chromatographe-atomospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 879(1), 13–26. https://doi.org/10.1016/S0021-9673(00)00372-1
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6.1. Semichem Inc.
  • Escobedo-Morales, A., Tepech-Carrillo, L., Bautista-Hernandez, A., Camacho-Garcia, J. H., Cortes-Arriagada, D., & Chigo-Anota, E. (2019). Effect of chemical order in the structural stability and physicochemical properties of B12N12 fullerenes. Scientific Reports, 9(1), 16521. https://doi.org/10.1038/s41598-019-52981-1
  • Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M., & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine (London, England), 14(1), 93–126. https://doi.org/10.2217/nnm-2018-0120
  • Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26(2), 163–166. https://doi.org/10.1016/0009-2614(74)85388-1
  • Fricker, A. D., LaRoe, S. L., Shea, M. E., & Bedard, D. L. (2014). Dehalococcoides mccartyi strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes. Environmental Science & Technology, 48(24), 14300–14308. https://doi.org/10.1021/es503553f
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2013). Gaussian 09, Revision D.01. Gaussian, Inc.
  • Garcia-Hernandez, E., Salazar-Garcia, E., Shakerzadeh, E., & Chigo-Anota, E. (2020). Effect of dehydrogenated hydrocarbon doping on the electronic properties of graphene-type nanosheets. Physics Letters A, 384(27), 126702. https://doi.org/10.1016/j.physleta.2020.126702
  • Halvorson, R. A., & Vikesland, P. J. (2010). Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environmental Science & Technology, 44(20), 7749–7755. https://doi.org/10.1021/es101228z
  • Hambly, A. N., & O’Grady, B. V. (1962). Hydrogen bonding in organic compounds. VI. Interaction between groups in ortho-substituted anilines. Australian Journal of Chemistry, 15(4), 626–641. https://doi.org/10.1071/CH9620626
  • Hausman, D. S., Cambron, R. T., & Sakr, A. (2005). Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity. International Journal of Pharmaceutics, 298(1), 80–90. https://doi.org/10.1016/j.ijpharm.2005.04.011
  • Jafari, Z., Baharfar, R., Rad, A. S., & Asghari, S. (2021). Potential of graphene oxide as a drug delivery system of sumatriptan, A detailed density functional theory study. Journal of Biomolecular Structure & Dynamics, 39(5), 1611–1620. https://doi.org/10.1080/07391102.2020.1736161
  • Jeanmaire, D. L., & Van Duyne, R. P. (1977). Surface Raman spectro electrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84(1), 1–20. https://doi.org/10.1016/S0022-0728(77)80224-6
  • Jiang, Y., Wang, J., Malfatti, L., Carboni, D., Senes, N., & Innocenzi, P. (2018). Highly durable graphene mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Applied Surface Science, 450, 451–460. https://doi.org/10.1016/j.apsusc.2018.04.218
  • Juarez, A. R., Ortiz-Chi, F., Borges-Martinez, M., Cardenas-Jiron, G., Villanueva, M. S., & Anota, E. C. (2019). Stability, electronic and optical properties of the boron nitride cage (B47N53) from quantum mechanical calculations. Physica E: Low-Dimensional Systems and Nanostructures, 111, 118–126. https://doi.org/10.1016/j.physe.2019.02.017
  • Juarez, A. R., Otriz-Chi, F., Pino-Rios, R., Cardenas-Jiron, G., Villanueva, M. S., & Anota, E. C. (2020). The boron nitride (B116N124) fullerene: Stability and electronic properties from DFT simulations. Chemical Physics Letters, 741, 137097. j.cplett.2020.137097
  • Kadar, M., Nagy, Z., Karancsi, T., & Farsang, G. (2001a). The electrochemical oxidation of 4-bromoaniline, 2,4-dibromoaniline, 2,4,6-tribromoaniline and 4-iodoaniline in acetronitrile solution. Electrochimica Acta, 46(22), 3405–3414. https://doi.org/10.1016/S0013-4686(01)00538-2
  • Kadar, M., Nagy, Z., Karancsi, T., & Farsang, G. (2001b). The electrochemical oxidation of 4-chloroaniline, 2,4-dichloroaniline and 2,4,6-trichloroaniline in acetronitrile solution. Electrochimica Acta, 46, 1297–1306. https://doi.org/10.1016/S0013-4686(00)00715-5
  • Khodashenas, B., Ardjmand, M., Baei, M. S., Rad, A. S., & Khiyavi, A. A. (2020). Bovine serum albumin/gold nano particles as a drug delivery system for curcumin: Experimental and computational studies. Journal of Biomolecular Structure and Dynamics, 38(15), 4644–4654. https://doi.org/10.1080/07391102.2019.1683073
  • Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface enhanced Raman scattering (SERS). Physical Review Letters, 78(9), 1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667
  • Krueger, P. J. (1963). Intramolecular hydrogen bonding and the anharmonicity of the NH2 stretching vibrations in substituted anilines. Canadian Journal of Chemistry, 41(2), 363–377. https://doi.org/10.1139/v63-053
  • Lacko, A. G., Sabnis, N. A., Nagarajan, B., & McConathy, W. J. (2015). HDL as a drug and nucleic acid delivery vehicle. Frontiers in Pharmacology, 6, 247. https://doi.org/10.3389/fphar.2015.00247
  • Lady, J. H., & Whetsel, K. B. (1965). New assignments for the first overtone of N-H and N-D stretching bands of anilines and the effect of intramolecular hydrogen bonding on the anharmonicities of N-H vibrations. Spectrochimica Acta Part Acta, 21(9), 1669–1679. https://doi.org/10.1016/0371-1951(65)80078-9
  • Lazar, P., Karlický, F., Jurečka, P., Kocman, M., Otyepková, E., Šafářová, K., & Otyepka, M. (2013). Adsorption of small organic molecules on graphene. Journal of the American Chemical Society, 135(16), 6372–6377. https://doi.org/10.1021/ja403162r
  • Lewis, R. J. (1992). Sax’s, Van Nostrand.
  • Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., & Meyyappan, H. (2003). Carbon nanotubes sensors for gas and organic vapor detection. Nano Letters, 3(7), 929–933. https://doi.org/10.1021/nl034220x
  • Li, S. (2006). Semiconductor physical electronics (2nd ed.). Springer.
  • Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., Wang, J., Zou, Y., Anderson, G. J., Han, J.-Y., Chang, Y., Liu, Y., Zhang, C., Chen, L., Zhou, G., Nie, G., Yan, H., Ding, B., & Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258–264. https://doi.org/10.1038/nbt.4071
  • Li, S., Zhang, Y., Ho, S. H., Li, B., Wang, M., Deng, X., Yang, N., Liu, G., Lu, Z., Xu, J., Shi, Q., Han, J. Y., Zhang, L., Wu, Y., Zhao, Y., & Nie, G. (2020). Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles. Nature Biomedical Engineering, 4(7), 732–742. https://doi.org/10.1038/s41551-020-0573-2
  • Libnow, S., Wille, S., Christiansen, A., Hein, M., Reinke, H., Köckerling, M., & Miethchen, R. (2006). Synthesis and reactivity of halogenated 1,2,4-triazole nucleoside analogues with high potential for chemical modifications. Synthesis, 3(3), 496–508. https://doi.org/10.1055/s-2006-926281
  • Limam, I., Limam, R. D., Mezni, M., Guenne, A., Madigou, C., Driss, M. R., Bouchez, T., & Mazeas, L. (2016). Penta- and 2,4,6-tri-chlorophenol biodegradation during municipal solid waste anaerobic digestion. Ecotoxicology and Environmental Safety, 130, 270–278. https://doi.org/10.1016/j.ecoenv.2016.04.030
  • Lopez, P., Brandsma, S. A., Leonards, P. E. G., & De Boer, J. (2009). Methods for the determination of phenolic brominated flame retardants, and by-products, formulation intermediates and decomposition products of brominated flame retardants in water. Journal of Chromatography A, 1216(3), 334–345. https://doi.org/10.1016/j.chroma.2008.08.043
  • Mahani, N. M., & Yosefelahi, R. (2018). Interaction of B12N12 and Al12N12 nano-cages with amino acids: A density functional theory study. Moroccan Journal of Chemistry, 6, 187–194.
  • Mahboobeh, K., & Elham, T. L. (2020). B12Y12 (Y:N,P) fullerene like cages for exemestane delivery; molecular modeling investigation. Journal of Molecular Structure, 1217, 128455. https://doi.org/10.1016/j.molstruc.2020.128455
  • Mary, Y. S., & Mary, Y. S. (2021). Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 244, 118865. https://doi.org/10.1016/j.saa.2020.118865
  • Mary, Y. S., Panicker, C. Y., Sapnakumari, M., Narayana, B., Sarojini, B. K., Al-Saadi, A. A., Van Alsenoy, C., War, J. A., & Fun, H. K. (2015). Molecular structure, FT-IR, Vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-[5-(4-Bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 473–482. https://doi.org/10.1016/j.saa.2014.09.060
  • Mitragotri, S., Anderson, D. G., Chen, X., Chow, E. K., Ho, D., Kabanov, A. V., Karp, J. M., Kataoka, K., Mirkin, C. A., Petrosko, S. H., Shi, J., Stevens, M. M., Sun, S., Teoh, S., Venkatraman, S. S., Xia, Y., Wang, S., Gu, Z., & Xu, C. (2015). Accelerating the translation of nanomaterials in biomedicine. ACS Nano, 9(7), 6644–6654. https://doi.org/10.1021/acsnano.5b03569
  • Mohammadi, R., Hosseinian, A., Khosroshahi, E. S., Edjlali, L., & Vessally, E. (2018). DFT study on the adsorption behaviour and electronic responses of AlN nanotube and nanocage toward toxic halothane gas. Physica E: Low-Dimensional Systems and Nanostructures, 98, 53–59. https://doi.org/10.1016/j.physe.2017.12.019
  • Montero, L., Conradi, S., Weiss, H., & Popp, P. (2005). Determination of phenols in lake and ground water samples by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Journal of Chromatography. A, 1071(12), 163–169. https://doi.org/10.1016/j.chroma.2005.01.097
  • Mukherjee, V., Singh, K., Singh, N. P., & Yadav, R. A. (2009). FTIR and Raman spectra and SQM force field calculation for vibrational analysis of 2,3,4- and 2,3,6-tri-fluoro-anilines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73(1), 44–53. https://doi.org/10.1016/j.saa.2009.01.024
  • Mukherjee, V., Singh, N. P., & Yadav, R. A. (2009). FTIR and Raman spectra, DFT and normal coordinate computations of 2,4,5- and 2,4,6-tri-fluoroanilines. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73(2), 249–256. https://doi.org/10.1016/j.saa.2009.02.014
  • Mukherjee, V., Singh, N. P., & Yadav, R. A. (2011). Optimized geometry and vibrational spectra and NBO analysis of solid state 2,4,6-tri-fluorobenzoic acid hydrogen bonded dimer. Journal of Molecular Structure, 988(13), 24–34. https://doi.org/10.1016/j.molstruc.2010.11.064
  • Naderi, H. R., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., & Ganjali, M. R. (2017). Decoration of nitrogen doped reduced graphene oxide with cobalt tungstate nano particles for use in high performance supercapacitors. Applied Surface Science, 423, 1025–1034. https://doi.org/10.1016/j.apsusc.2017.06.239
  • Nicolai, A., Sumpter, B. G., & Meunier, V. (2014). Tunable water desalination across graphene oxide framework membranes. Physical Chemistry Chemical Physics: PCCP, 16(18), 8646–8654. https://doi.org/10.1039/c4cp01051e
  • Nie, S., & Emory, S. R. (1997). Probing single molecules and single nano particles by surface enhanced Raman scattering. Science, 275(5303), 1102–1106. https://doi.org/10.1126/science.275.5303.1102
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field in atomically thin carbon films. Science (New York, N.Y.), 306(5696), 666–669. https://doi.org/10.1126/science.1102896
  • O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). Cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Padash, R., Esfahani, M. R., & Rad, A. S. (2020). The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: Detailed DFT and QTAIM investigations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1792991
  • Padash, R., Rahimi-Nasrabadi, M., Rad, A. S., Sobhani-Nasab, A., Jesionowski, T., & Ehrlich, H. (2019). A comparative computational investigation of phosgene adsorption on (XY) 12(X = Al, B and Y = N,P) nanoclusters: DFT investigations. Journal of Cluster Science, 30(1), 203–218. https://doi.org/10.1007/s10876-018-1479-y
  • Padash, R., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., Mirmotahari, M., Ehrlich, H., Rad, A. S., & Peyravi, M. (2018). Is it possible to use X12Y12 (X = Al, B and Y = N,P) nanocages for drug delivery systems? A DFT study of the adsorption property of 4-aminopyridine drug. Applied Physics A, 124(9), 582. https://doi.org/10.1007/s00339-018-1965-y
  • Pamukoglu, M. Y., & Kargi, F. (2008). Biodegradation kinetics of 2,4,6-trichlorphenol by Rhodococcus rhodochrous in batch culture. Enzyme and Microbial Technology, 43(1), 43–47. https://doi.org/10.1016/j.enzmictec.2008.02.001
  • Pan, M., Yang, J., Liu, K., Yin, Z., Ma, T., Liu, S., Xu, L., & Wang, S. (2020). Noble metal nanostructures materials for chemical and biosensing systems. Nanomaterials, 10(2), 209. https://doi.org/10.3390/nano10020209
  • Parvez, M. ; S., Shahzadi, K., Shahid, K., & Ali, S. (2004). 3-[(2,4,6-trichloroanilino)carbonyl]prop-2-enoic acid. Acta Crystallographica Section E Structure Reports Online, 60 (11), o2082–2084. https://doi.org/10.1107/S1600536804026030
  • Pavlenko, N. I., & Rubailo, A. I. (1985). Hydrogen bonding in a 2,4,6-tribromoaniline crystal. Journal of Structural Chemistry, 26(3), 485–192. https://doi.org/10.1007/BF00749392
  • Pino-Rios, R., Chigo-Anota, E., Shakerzadeh, E., & Cárdenas-Jirón, G. (2020). B12N12 cluster as a collector of noble gases: A quantum chemical study. Physica E: Low-Dimensional Systems and Nanostructures, 115, 113697. https://doi.org/10.1016/j.physe.2019.113697
  • Prosa, M., Bolognesi, M., Fornasari, L., Grasso, G., Lopez-Sanchez, L., Marabelli, F., & Toffanin, S. (2020). Nanostructures organic/hybrid materials and components in miniaturized optical and chemical sensors. Nanomaterials, 10(3), 480. https://doi.org/10.3390/nano10030480
  • Puig, D., & Barcelo, D. (1996). Determination of phenolic compounds in water and waste water. TrAC Trends in Analytical Chemistry, 15(8), 362–375. https://doi.org/10.1016/0165-9936(96)00057-X
  • Pusztai, S., Panczel, J., Dankhazi, T., & Farsang, G. (2004). The electrodimerization mechanism of 2,4,6-trichloro- and tribromoanilines in unbuffered acetronitrile. Journal of Electroanalytical Chemistry, 571(2), 233–239. https://doi.org/10.1016/j.jelechem.2004.04.020
  • Rad, A. S. (2018). Comparison of X12Y12 (X = Al, B and Y = N,P) fullerene-like nanoclusters toward adsorption of dimethyl ether. Journal of Theoretical and Computational Chemistry, 12, 1850013. https://doi.org/10.1142/S021963361850013X
  • Rad, A. S., Aghaei, S. M., Pazoki, H., Binaeian, E., & Mirzaei, M. (2018). Surface interaction of H2O and H2S onto Ca12O12 nanocluster: Quantum-chemical analyses. Surface and Interface Analysis, 50(4), 411–419. https://doi.org/10.1002/sia.6382
  • Rad, A. S., & Ayub, K. (2019). Change in the electronic and nonlinear optical properties of Fullerene through its incorporation with Sc-, Fe-, Cu- and Zn transition metals. Applied Physics A, 125(6), 430. https://doi.org/10.1007/s00339-019-2721-7
  • Rad, A. S., Samipour, V., Movaghgharnezhad, S., Mirabi, A., Shahavi, M. H., & Moghadas, B. K. (2019). X12N12 (X = Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surfaces and Interfaces, 15, 30–37. https://doi.org/10.1016/j.surfin.2019.02.001
  • Radomski, J. L. (1979). The primary aromatic amines: Their biological properties and structure-activity relationships. Annual Review of Pharmacology and Toxicology, 19, 129–157. https://doi.org/10.1146/annurev.pa.19.040179.001021
  • Raut, S., Mooberry, L., Sabnis, N., Garud, A., Dossou, A. S., & Lacko, A. (2018). Reconstituted HDL: Drug delivery platform for overcoming biological barriers to cancer therapy. Frontiers in Pharmacology, 9, 1154. https://doi.org/10.3389/fphar.2018.01154
  • Reddy, A. V. B., Moniruzzaman, M., Reddy, Y. V. M., & Madhavi, G. (2019). Graphene-based nanomaterials for the removal of pharmaceuticals in drinking water sources. In Graphene-based nanotechnologies for energy and environmental applictions (pp. 329–358). Elsevier.
  • Ribeiro da Silva, M. A. V., Ferreira, A. I. M. C. L., & Gomes, J. R. B. (2007). Experimental and computational study of the thermochemistry of the fluoromethylaniline isomers. The Journal of Physical Chemistry B, 111(23), 6444–6451. https://doi.org/10.1021/jp071232o
  • Rodríguez, I., Llompart, M. P., & Cela, R. (2000). Solid-phase extraction of phenols. Journal of Chromatography. A, 885(12), 291–304. https://doi.org/10.1016/S0021-9673(00)00116-3
  • Sabokdast, S., Horri, A., Azar, Y. T., Momeni, M., & Tavakoli, M. B. (2020). Adsorption of adenine molecule on χ3 borophene nanosheets: A density functional theory study. Physica E: Low-Dimensional Systems and Nanostructures, 119, 114026. https://doi.org/10.1016/j.physe.2020.114026
  • Saraji, M., & Bakhshi, M. (2005). Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatography-mass spectrometric detection. Journal of Chromatography. A, 1098(12), 30–36. https://doi.org/10.1016/j.chroma.2005.08.063
  • Schlemper, E. O., & Konnert, J. (1967). The space groups and unit cell dimensions of 2,4,6-tribromoaniline and 2,4,6-trichloroaniline. Acta Crystallographica, 22(6), 918–919. https://doi.org/10.1107/S0365110X67001781
  • Shafieyoon, P., Mehdipour, E., & Mary, Y. S. (2019). Synthesis, characterization and biological investigation of glycine based sulfonamide derivative and its complex: Vibration assignment, HOMO-LUMO analysis, MEP and molecular docking. Journal of Molecular Structure, 1181, 244–252. https://doi.org/10.1016/j.molstruc.2018.12.067
  • Shaji, S., & Rasheed, T. M. A. (2001). Vibrational overtone spectra of chloroanilines- evidence for intramolecular hydrogen bonding in o-chloroaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(2), 337–347. https://doi.org/10.1016/S1386-1425(00)00387-5
  • Sharma, V., Som, N. N., Pillai, S. B., & Jha, P. K. (2020). Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 224, 117352. https://doi.org/10.1016/j.saa.2019.117352
  • Sheeja, S. R., Mangalam, N. A., Kurup, M. R. P., Mary, Y. S., Raju, K., Varghese, H. T., & Panicker, C. Y. (2010). Vibrational spectroscopic studies and computational study of quinoline-2-carbaldehyde benzoyl hydrazone. Journal of Molecular Structure, 973(13), 36–46. https://doi.org/10.1016/j.molstruc.2010.03.016
  • Sherafati, M., Rad, A. S., Ardjmand, M., Heydarinasab, A., Peyravi, M., & Mirzaei, M. (2018). Beryllium oxide (BeO) nano tube provides excellent surface towards adenine adsorption: A dispersion corrected DFT study in gas and water phases. Current Applied Physics, 18(9), 1059–1065. https://doi.org/10.1016/j.cap.2018.05.024
  • Smith, E., & Dent, G. (2004). Modern Raman spectroscopy – A practical approach. Wiley. https://doi.org/10.1002/0470011831.index
  • Sun, Q., Zhang, R., Qiu, J., Liu, R., & Xu, W. (2018). On-surface synthesis of carbon nanostructures. Advanced Materials, 30(17), 1705630. https://doi.org/10.1002/adma.201705630
  • Sureshkumar, B., Mary, Y. S., Panicker, C. Y., Suma, S., Armaković, S., Armaković, S. J., Van Alsenoy, C., & Narayana, B. (2020). Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic, DFT and MD study. Arabian Journal of Chemistry, 13(1), 632–648. https://doi.org/10.1016/j.arabjc.2017.07.006
  • Sweetman, M., May, S., Mebberson, N., Pendleton, P., Vasilev, K., Plush, S., & Hayball, J. (2017). Activated carbon, carbon nanotubes and graphene: Materials and composites for advanced water purification. C, 3(4), 18. https://doi.org/10.3390/c3020018
  • Tomlin, C. (1995). The pesticide manual. The Bath Press.
  • Ullah, Z., & Thomas, R. (2020a). Markovnikov versus anti-Markovnikov additions and C-H activation: Pd-Cu synergistic catalysis. Applied Organometallic Chemistry, 35(1), e6077. https://doi.org/10.1002/aoc.6077
  • Ullah, Z., & Thomas, R. (2020b). Mechanistic insights can resolve the low reactivity and selectivity issues intermolecular Rauhut-Currier (RC) of γ-hydroxyenone. New Journal of Chemistry, 44(29), 12857–12865. https://doi.org/10.1039/D0NJ02732D
  • Wang, X., & Guo, L. (2020). SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angewandte Chemie (International Ed. in English), 59(11), 4231–4239. https://doi.org/10.1002/anie.201913375
  • Woo, Y. T., & Lai, D. Y. (2001). Patty’s toxicology. Wiley.
  • Worthing, C. R. (1987). The pesticide manual. The Lavenham Press Ltd.
  • Younes, U. E. (1986a). Eur. Pat. Appl. EP 188904 A1., 30.
  • Younes, U. E. (1986b). Eur. Pat. Appl. EP 188905 A1., 30.
  • Zhang, M., He, J., Jiang, C., Zhang, W., Yang, Y., Wang, Z., & Liu, J. (2017). Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy. International Journal of Nanomedicine, 12, 533–558. https://doi.org/10.2147/IJN.S124252
  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2005). Exchange correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics and noncovalent interactions. The Journal of Chemical Physics, 123(16), 161103. https://doi.org/10.1063/1.2126975
  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2(2), 364–382. https://doi.org/10.1021/ct0502763
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: Two new functional and systematic testing of our M06-class functional and 12 other functional. Theoretical Chemistry Accounts, 120(13), 215–241. https://doi.org/10.1007/s00214-007-0310-x
  • Zhu, H., Xu, Z., Xie, D., & Fang, Y. (2018). Graphene: Fabrication, characterizations, properties and applications. Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.