920
Views
32
CrossRef citations to date
0
Altmetric
Research Articles

Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 8752-8764 | Received 04 Mar 2021, Accepted 08 Apr 2021, Published online: 05 May 2021

References

  • Abbott, C., Mackness, M., Kumar, S., Olukoga, A., Gordon, C., Arrol, S., Bhatnagar, D., Boulton, A., & Durrington, P. (1993). Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus. Clinical Science, 85(1), 77–81. https://doi.org/10.1042/cs0850077.
  • Akbaba, Y., Türkeş, C., Polat, L., Söyüt, H., Şahin, E., Menzek, A., Göksu, S., & Beydemir, Ş. (2013). Synthesis and paroxonase activities of novel bromophenols. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(5), 1073–1079. https://doi.org/10.3109/14756366.2012.715287.
  • Akhtar, N., Saha, A., Kumar, V., Pradhan, N., Panda, S., Morla, S., Kumar, S., & Manna, D. (2018). Diphenylethylenediamine-based potent anionophores: Transmembrane chloride ion transport and apoptosis inducing activities. ACS Applied Materials & Interfaces, 10(40), 33803–33813. https://doi.org/10.1021/acsami.8b06664.
  • Akocak, S., Taslimi, P., Lolak, N., Işık, M., Durgun, M., Budak, Y., Türkeş, C., Gülçin, İ., & Beydemir, Ş. (2021). Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α-glycosidase and cholinesterase inhibitors. Chemistry & Biodiversity, 18(4), e2000958. https://doi.org/10.1002/cbdv.202000958.
  • Alomari, M., Taha, M., Rahim, F., Selvaraj, M., Iqbal, N., Chigurupati, S., Hussain, S., Uddin, N., Almandil, N. B., & Nawaz, M. (2021). Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 108, 104638. https://doi.org/10.1016/j.bioorg.2021.104638.
  • Apaydın, S., & Török, M. (2019). Sulfonamide derivatives as multi-target agents for complex diseases. Bioorganic & Medicinal Chemistry Letters, 29(16), 2042–2050. https://doi.org/10.1016/j.bmcl.2019.06.041.
  • Atmaca, U., Daryadel, S., Taslimi, P., Çelik, M., & Gülçin, İ. (2019). Synthesis of β‐amino acid derivatives and their inhibitory profiles against some metabolic enzymes. Archiv Der Pharmazie, 352(12), 1900200. https://doi.org/10.1002/ardp.201900200.
  • Benham, C., Bolton, T., & Lang, R. (1985). Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature, 316(6026), 345–347. https://doi.org/10.1038/316345a0.
  • Beydemir, Ş., Türkeş, C., & Yalçın, A. (2019). Gadolinium-based contrast agents: In vitro paraoxonase 1 inhibition, in silico studies. Drug and Chemical Toxicology, 1–10. https://doi.org/10.1080/01480545.2019.1620266.
  • Boy, S., Türkan, F., Beytur, M., Aras, A., Akyıldırım, O., Karaman, H. S., & Yüksek, H. (2021). Synthesis, design, and assessment of novel morpholine-derived Mannich bases as multifunctional agents for the potential enzyme inhibitory properties including docking study. Bioorganic Chemistry, 107, 104524. https://doi.org/10.1016/j.bioorg.2020.104524.
  • Caglayan, C. (2019). The effects of naringin on different cyclophosphamide-induced organ toxicities in rats: Investigation of changes in some metabolic enzyme activities. Environmental Science and Pollution Research, 26(26), 26664–26673. https://doi.org/10.1007/s11356-019-05915-3.
  • Çelik, H., Kandemir, F. M., Caglayan, C., Özdemir, S., Çomaklı, S., Kucukler, S., & Yardım, A. (2020). Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Molecular Biology Reports, 47(3), 2023–2034. https://doi.org/10.1007/s11033-020-05302-z.
  • Chen, Y.-G., Li, P., Li, P., Yan, R., Zhang, X.-Q., Wang, Y., Zhang, X.-T., Ye, W.-C., & Zhang, Q.-W. (2013). α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules, 18(4), 4221–4232. https://doi.org/10.3390/molecules18044221.
  • Chuiko, G. (2000). Comparative study of acetylcholinesterase and butyrylcholinesterase in brain and serum of several freshwater fish: Specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Comparative Biochemistry and Physiology Part C, 127(3), 233–242. https://doi.org/10.1016/S0742-8413(00)00150-X.
  • Collins, A. L., Aitken, T. J., Greenfield, V. Y., Ostlund, S. B., & Wassum, K. M. (2016). Nucleus accumbens acetylcholine receptors modulate dopamine and motivation. Neuropsychopharmacology, 41(12), 2830–2838. https://doi.org/10.1038/npp.2016.81.
  • Demir, Y. (2020). Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Development Research, 81(5), 628–636. https://doi.org/10.1002/ddr.21667.
  • Demir, Y., Türkeş, C., & Beydemir, Ş. (2020). Molecular docking studies and inhibition properties of some antineoplastic agents against paraoxonase-I. Anti-Cancer Agents in Medicinal Chemistry, 20(7), 887–896. https://doi.org/10.2174/1871520620666200218110645.
  • Dias, C. M., Li, H., Valkenier, H., Karagiannidis, L. E., Gale, P. A., Sheppard, D. N., & Davis, A. P. (2018). Anion transport by ortho-phenylene bis-ureas across cell and vesicle membranes. Organic & Biomolecular Chemistry, 16(7), 1083–1087. https://doi.org/10.1039/C7OB02787G.
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888. https://doi.org/10.1021/ja993663t.
  • Durgun, M., Türkeş, C., Işık, M., Demir, Y., Saklı, A., Kuru, A., Güzel, A., Beydemir, Ş., Akocak, S., & Osman, S. M. (2020). Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 950–962. https://doi.org/10.1080/14756366.2020.1746784.
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88. 95. https://doi.org/10.1016/0006-2952(61)90145-9.
  • Fischer, P., Karlsson, G., Butters, T., Dwek, R., & Platt, F. (1996). N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. Journal of Virology, 70(10), 7143–7152.
  • Francis, P. T. (2005). The interplay of neurotransmitters in Alzheimer's disease. CNS Spectrums, 10(S18), 6–9. https://doi.org/10.1017/s1092852900014164.
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein – ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o.
  • Gokcen, T., Gulcin, I., Ozturk, T., & Goren, A. C. (2016). A class of sulfonamides as carbonic anhydrase I and II inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(suppl 2), 180–188. https://doi.org/10.1080/14756366.2016.1198900.
  • Gülçin, İ., Scozzafava, A., Supuran, C. T., Koksal, Z., Turkan, F., Çetinkaya, S., Bingöl, Z., Huyut, Z., & Alwasel, S. H. (2016). Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1698–1702. https://doi.org/10.3109/14756366.2015.1135914.
  • Gündoğdu, S., Türkeş, C., Arslan, M., Demir, Y., & Beydemir, Ş. (2019). New Isoindole‐1, 3‐dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: Design, synthesis, and biological evaluation. ChemistrySelect, 4(45), 13347–13355. https://doi.org/10.1002/slct.201903458.
  • Güzel, E., Koçyiğit, Ü. M., Arslan, B. S., Ataş, M., Taslimi, P., Gökalp, F., Nebioğlu, M., Şişman, İ., & Gulçin, İ. (2019). Aminopyrazole‐substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Archiv Der Pharmazie, 352(2), 1800292. https://doi.org/10.1002/ardp.201800292.
  • Hamad, A., Abbas Khan, M., Ahmad, I., Imran, A., Khalil, R., Al-Adhami, T., Miraz Rahman, K., Quratulain, Zahra, N., & Shafiq, Z. (2020). Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorganic Chemistry, 105, 104336. https://doi.org/10.1016/j.bioorg.2020.104336.
  • Han, W., & Li, C. (2010). Linking type 2 diabetes and Alzheimer's disease. Proceedings of the National Academy of Sciences, 107(15), 6557–6558. https://doi.org/10.1073/pnas.1002555107.
  • Hollander, P. (1992). Safety profile of acarbose, an α-glucosidase inhibitor. Drugs, 44(3), 47–53. https://doi.org/10.2165/00003495-199200443-00007.
  • Iftikhar, M., Saleem, M., Riaz, N., Ahmed, I., Rahman, J., Ashraf, M., Sharif, M. S., Khan, S. U., & Htar, T. T. (2019). A novel five‐step synthetic route to 1, 3, 4‐oxadiazole derivatives with potent α‐glucosidase inhibitory potential and their in silico studies. Archiv Der Pharmazie, 352(12), 1900095. https://doi.org/10.1002/ardp.201900095.
  • Işık, M. (2019). The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: Kinetic analysis and molecular docking. Neurochemical Research, 44(9), 2147–2155. https://doi.org/10.1007/s11064-019-02852-y.
  • Işık, M., Akocak, S., Lolak, N., Taslimi, P., Türkeş, C., Gülçin, İ., Durgun, M., & Beydemir, Ş. (2020a). Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3-diaryltriazene-substituted sulfathiazole derivatives. Archiv Der Pharmazie, 353(9), e2000102. https://doi.org/10.1002/ardp.202000102.
  • Işık, M., Beydemir, Ş., Demir, Y., Durgun, M., Türkeş, C., Nasır, A., Necip, A., & Akkuş, M. (2020b). Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. International Journal of Biological Macromolecules, 146, 1111–1123. https://doi.org/10.1016/j.ijbiomac.2019.09.237.
  • Işık, M., Beydemir, Ş., Yılmaz, A., Naldan, M. E., Aslan, H. E., & Gülçin, İ. (2017). Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomedicine & Pharmacotherapy, 87, 561–567. https://doi.org/10.1016/j.biopha.2017.01.003.
  • Işık, M., Demir, Y., Durgun, M., Türkeş, C., Necip, A., & Beydemir, Ş. (2020c). Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chemical Papers, 74, 1395–1405. https://doi.org/10.1007/s11696-019-00988-3.
  • Istrefi, Q., Türkeş, C., Arslan, M., Demir, Y., Nixha, A. R., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2020). Sulfonamides incorporating ketene N, S‐acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Archiv Der Pharmazie, 353(6), 1900383. https://doi.org/10.1002/ardp.201900383.
  • Kalaycı, M., Türkeş, C., Arslan, M., Demir, Y., & Beydemir, Ş. (2021). Novel benzoic acid derivatives: Synthesis and biological evaluation as multi-target acetylcholinesterase and carbonic anhydrase inhibitors. Archiv Der Pharmazie, 354(3), e2000282. https://doi.org/10.1002/ardp.202000282.
  • Kessler, P., Marchot, P., Silva, M., & Servent, D. (2017). The three‐finger toxin fold: A multifunctional structural scaffold able to modulate cholinergic functions. Journal of Neurochemistry, 142, 7–18. https://doi.org/10.1111/jnc.13975.
  • Khanfar, M. A., AbuKhader, M. M., Alqtaishat, S., & Taha, M. O. (2013). Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. Journal of Molecular Graphics and Modelling, 42, 39–49. https://doi.org/10.1016/j.jmgm.2013.02.009.
  • Kilic, A., Beyazsakal, L., Işık, M., Türkeş, C., Necip, A., Takım, K., & Beydemir, Ş. (2020). Mannich reaction derived novel boron complexes with amine-bis (phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. Journal of Organometallic Chemistry, 927, 121542. https://doi.org/10.1016/j.jorganchem.2020.121542.
  • Kosak, U., Brus, B., Knez, D., Zakelj, S., Trontelj, J., Pislar, A., Sink, R., Jukic, M., Zivin, M., & Podkowa, A. (2018). The magic of crystal structure-based inhibitor optimization: Development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. Journal of Medicinal Chemistry, 61(1), 119–139. https://doi.org/10.1021/acs.jmedchem.7b01086.
  • Krieger, R. (2010). Hayes' handbook of pesticide toxicology. Academic Press.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1.
  • Lolak, N., Akocak, S., Türkeş, C., Taslimi, P., Işık, M., Beydemir, Ş., Gülçin, İ., & Durgun, M. (2020). Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1, 3, 5-triazine structural motifs. Bioorganic Chemistry, 100, 103897. https://doi.org/10.1016/j.bioorg.2020.103897.
  • Lou, Y., McDonald, P. C., Oloumi, A., Chia, S., Ostlund, C., Ahmadi, A., Kyle, A., Auf Dem Keller, U., Leung, S., & Huntsman, D. (2011). Targeting tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Research, 71(9), 3364–3376. https://doi.org/10.1158/0008-5472.CAN-10-4261.
  • McCulloch, D. K., Kurtz, A. B., & Tattersall, R. B. (1983). A new approach to the treatment of nocturnal hypoglycemia using alpha-glucosidase inhibition. Diabetes Care, 6(5), 483–487. https://doi.org/10.2337/diacare.6.5.483.
  • Mughal, E. U., Javid, A., Sadiq, A., Murtaza, S., Zafar, M. N., Khan, B. A., Sumrra, S. H., Tahir, M. N., & Khan, K. M. (2018). Synthesis, structure-activity relationship and molecular docking studies of 3-O-flavonol glycosides as cholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 26(12), 3696–3706. https://doi.org/10.1016/j.bmc.2018.05.050.
  • Mughal, E. U., Sadiq, A., Ashraf, J., Zafar, M. N., Sumrra, S. H., Tariq, R., Mumtaz, A., Javid, A., Khan, B. A., & Ali, A. (2019). Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Bioorganic Chemistry, 91, 103124. https://doi.org/10.1016/j.bioorg.2019.103124.
  • Mughal, E. U., Sadiq, A., Ayub, M., Naeem, N., Javid, A., Sumrra, S. H., Zafar, M. N., Khan, B. A., Malik, F. P., & Ahmed, I. (2020). Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: Synthesis, structure–activity relationship and molecular modelling simulations. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1803136.
  • Mughal, E. U., Sadiq, A., Murtaza, S., Rafique, H., Zafar, M. N., Riaz, T., Khan, B. A., Hameed, A., & Khan, K. M. (2017). Synthesis, structure–activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 100–106. https://doi.org/10.1016/j.bmc.2016.10.016.
  • Nachon, F., Carletti, E., Ronco, C., Trovaslet, M., Nicolet, Y., Jean, L., & Renard, P.-Y. (2013). Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer's drugs targeting acetyl-and butyryl-cholinesterase. Biochemical Journal, 453(3), 393–399. https://doi.org/10.1042/BJ20130013.
  • Nakagawa, K. (2013). Studies targeting α-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: Background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Bioscience, Biotechnology, and Biochemistry, 77(5), 900–908. https://doi.org/10.1271/bbb.120908.
  • Pacchiano, F., Carta, F., McDonald, P. C., Lou, Y., Vullo, D., Scozzafava, A., Dedhar, S., & Supuran, C. T. (2011). Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry, 54(6), 1896–1902. https://doi.org/10.1021/jm101541x.
  • Pohanka, M. (2012). Acetylcholinesterase inhibitors: A patent review (2008–present). Expert Opinion on Therapeutic Patents, 22(8), 871–886. https://doi.org/10.1517/13543776.2012.701620.
  • Poulsen, K. A., Andersen, E. C., Hansen, C. F., Klausen, T. K., Hougaard, C., Lambert, I. H., & Hoffmann, E. K. (2010). Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: Role of chloride channels. American Journal of Physiology-Cell Physiology, 298(1), C14–C25. https://doi.org/10.1152/ajpcell.00654.2008.
  • Provensi, G., Passani, M. B., Costa, A., Izquierdo, I., & Blandina, P. (2020). Neuronal histamine and the memory of emotionally salient events. British Journal of Pharmacology, 177(3), 557–569. https://doi.org/10.1111/bph.14476.
  • Rao, A. A., Sridhar, G. R., & Das, U. N. (2007). Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Medical Hypotheses, 69(6), 1272–1276. https://doi.org/10.1016/j.mehy.2007.03.032.
  • Reale, M., Costantini, E., Di Nicola, M., D’Angelo, C., Franchi, S., D’Aurora, M., Di Bari, M., Orlando, V., Galizia, S., & Ruggieri, S. (2018). Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: Implication in peripheral inflammation. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-19701-7.
  • Ren, S., Xu, D., Pan, Z., Gao, Y., Jiang, Z., & Gao, Q. (2011). Two flavanone compounds from litchi (Litchi chinensis Sonn.) seeds, one previously unreported, and appraisal of their α-glucosidase inhibitory activities. Food Chemistry, 127(4), 1760–1763. https://doi.org/10.1016/j.foodchem.2011.02.054.
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8(1), 1–10. https://doi.org/10.1038/s41467-017-01263-3.
  • Ruivo, L. M. T.-G., Baker, K. L., Conway, M. W., Kinsley, P. J., Gilmour, G., Phillips, K. G., Isaac, J. T., Lowry, J. P., & Mellor, J. R. (2017). Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Reports, 18(4), 905–917. https://doi.org/10.1016/j.celrep.2016.12.085.
  • Saha, T., Hossain, M. S., Saha, D., Lahiri, M., & Talukdar, P. (2016). Chloride-mediated apoptosis-inducing activity of bis (sulfonamide) anionophores. Journal of the American Chemical Society, 138(24), 7558–7567. https://doi.org/10.1021/jacs.6b01723.
  • Saleem, F., Khan, K. M., Chigurupati, S., Solangi, M., Nemala, A. R., Mushtaq, M., Ul-Haq, Z., Taha, M., & Perveen, S. (2021). Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies. Bioorganic Chemistry, 106, 104489. https://doi.org/10.1016/j.bioorg.2020.104489.
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8.
  • Schneider, L. S. (2000). A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer's disease. Dialogues in Clinical Neuroscience, 2(2), 111. https://doi.org/10.31887/DCNS.2000.2.2/lschneider.
  • Sever, B., Altıntop, M. D., Demir, Y., Türkeş, C., Özbaş, K., Çiftçi, G. A., Beydemir, Ş., & Özdemir, A. (2021). A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chemistry, 19, 347–357. https://doi.org/10.1515/chem-2021-0032.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., & Beydemir, Ş. (2020). Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163, 1970–1988. https://doi.org/10.1016/j.ijbiomac.2020.09.043.
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z.
  • Supuran, C. T., Scozzafava, A., Jurca, B. C., & Ilies, M. A. (1998). Carbonic anhydrase inhibitors-Part 49: Synthesis of substituted ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides with increased affinities for isozyme I. European Journal of Medicinal Chemistry, 33(2), 83–93. https://doi.org/10.1016/S0223-5234(98)80033-0.
  • Taha, M., Imran, S., Salahuddin, M., Iqbal, N., Rahim, F., Uddin, N., Shehzad, A., Khalid Farooq, R., Alomari, M., & Mohammed Khan, K. (2021). Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin-induced diabetic albino wistar rats. Bioorganic Chemistry, 110, 104808. https://doi.org/10.1016/j.bioorg.2021.104808
  • Taslimi, P., Caglayan, C., Farzaliyev, V., Nabiyev, O., Sujayev, A., Turkan, F., Kaya, R., & Gulçin, İ. (2018). Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes inhibitors: The novel N, N′‐bis‐cyanomethylamine and alkoxymethylamine derivatives. Journal of Biochemical and Molecular Toxicology, 32(4), e22042. https://doi.org/10.1002/jbt.22042.
  • Taslimi, P., Işık, M., Türkan, F., Durgun, M., Türkeş, C., Gülçin, İ., & Beydemir, Ş. (2020a). Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: Biological evaluation and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1790422.
  • Taslimi, P., Turhan, K., Türkan, F., Karaman, H. S., Turgut, Z., & Gulcin, I. (2020b). Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives: Synthetic analogues for the treatment of Alzheimer's disease and diabetes mellitus. Bioorganic Chemistry, 97, 103647. https://doi.org/10.1016/j.bioorg.2020.103647.
  • Topal, F. (2019a). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385. https://doi.org/10.1002/jbt.22385.
  • Topal, M. (2019b). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527–1535. https://doi.org/10.1080/10942912.2019.1656234.
  • Tugrak, M., Gul, H. I., Demir, Y., & Gulcin, I. (2020). Synthesis of benzamide derivatives with thiourea-substituted benzenesulfonamides as carbonic anhydrase inhibitors. Archiv Der Pharmazie, 354(2), e2000230. https://doi.org/10.1002/ardp.202000230.
  • Turhan, K., Pektaş, B., Türkan, F., Tuğcu, F. T., Turgut, Z., Taslimi, P., Karaman, H. S., & Gulcin, I. (2020). Novel benzo [b] xanthene derivatives: Bismuth (III) triflate‐catalyzed one‐pot synthesis, characterization, and acetylcholinesterase, glutathione S‐transferase, and butyrylcholinesterase inhibitory properties. Archiv Der Pharmazie, 353(8), 2000030. https://doi.org/10.1002/ardp.202000030.
  • Turkan, F., Cetin, A., Taslimi, P., Karaman, H. S., & Gulçin, İ. (2019). Synthesis, characterization, molecular docking and biological activities of novel pyrazoline derivatives. Archiv Der Pharmazie, 352(6), 1800359. https://doi.org/10.1002/ardp.201800359.
  • Türkeş, C. (2019a). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: Chemotherapeutic drugs. Protein and Peptide Letters, 26(6), 392–402. https://doi.org/10.2174/0929866526666190226162225.
  • Türkeş, C. (2019b). A potential risk factor for paraoxonase 1: In silico and in‐vitro analysis of the biological activity of proton‐pump inhibitors. Journal of Pharmacy and Pharmacology, 71(10), 1553–1564. https://doi.org/10.1111/jphp.13141.
  • Türkeş, C., Arslan, M., Demir, Y., Cocaj, L., Nixha, A. R., & Beydemir, Ş. (2019a). Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 89, 103004. https://doi.org/10.1016/j.bioorg.2019.103004.
  • Türkeş, C., & Beydemir, Ş. (2020). Inhibition of human serum paraoxonase-I with antimycotic drugs: In vitro and in silico studies. Applied Biochemistry and Biotechnology, 190(1), 252–269. https://doi.org/10.1007/s12010-019-03073-3.
  • Türkeş, C., Beydemir, Ş., & Küfrevioğlu, Ö. İ. (2019b). In vitro and in silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor. ChemistrySelect, 4(33), 9731–9736. https://doi.org/10.1002/slct.201902424.
  • Türkeş, C., Demir, Y., & Beydemir, S. (2019c). Anti-diabetic properties of calcium channel blockers: Inhibition effects on aldose reductase enzyme activity. Applied Biochemistry and Biotechnology, 189(1), 318–329. https://doi.org/10.1007/s12010-019-03009-x.
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2020). Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1806927.
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2021). Calcium channel blockers: Molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure and Dynamics, 39(5), 1672–1680. https://doi.org/10.1080/07391102.2020.1736631.
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2014). Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 66(1), 74–80. https://doi.org/10.1016/j.pharep.2013.08.007.
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2015). Human serum paraoxonase-1 (hPON1): In vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 622–628. https://doi.org/10.3109/14756366.2014.959511.
  • Türkeş, C., Söyüt, H., & Beydemir, Ş. (2016). In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environmental Toxicology and Pharmacology, 42, 252–257. https://doi.org/10.1016/j.etap.2015.11.024.
  • Yu, X.-H., Hong, X.-Q., Mao, Q.-C., & Chen, W.-H. (2019). Biological effects and activity optimization of small-molecule, drug-like synthetic anion transporters. European Journal of Medicinal Chemistry, 184, 111782. https://doi.org/10.1016/j.ejmech.2019.111782.
  • Zaman, M., Khan, A. N., Zakariya, S. M., & Khan, R. H. (2019). Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. International Journal of Biological Macromolecules, 134, 1022–1037. https://doi.org/10.1016/j.ijbiomac.2019.05.109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.