2,051
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Marine algal antagonists targeting 3CL protease and spike glycoprotein of SARS-CoV-2: a computational approach for anti-COVID-19 drug discovery

, , , , , , , & ORCID Icon show all
Pages 8961-8988 | Received 30 Jul 2020, Accepted 19 Apr 2021, Published online: 20 May 2021

References

  • Abdel-Motal, U. M., Wang, S., Awad, A., Lu, S., Wigglesworth, K., & Galili, U. (2010). Increased immunogenicity of HIV-1 p24 and gp120 following immunization with gp120/p24 fusion protein vaccine expressing α-gal epitopes. Vaccine, 28(7), 1758–1765. https://doi.org/10.1016/j.vaccine.2009.12.015
  • Ahmadi, A., Zorofchian, M. S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Research International, 2015, 1–10. https://doi.org/10.1155/2015/825203
  • Ahn, M.-J., Yoon, K.-D., Min, S.-Y., Lee, J. S., Kim, J. H., Kim, T. G., Kim, S. H., Kim, N.-G., Huh, H., & Kim, J. (2004). Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biological and Pharmaceutical Bulletin, 27(4), 544–547. https://doi.org/10.1248/bpb.27.544
  • Baba, M., Schols, D., De Clercq, E., Pauwels, R., Nagy, M., Gyorgyi-Edelenyi, J., Low, M., & Gorog, S. (1990). Novel sulfated polymers as highly potent and selective inhibitors of human immunodeficiency virus replication and giant cell formation. Antimicrobial Agents and Chemotherapy, 34(1), 134–138. https://doi.org/10.1128/AAC.34.1.134
  • Barbosa, J. D. S., Costa, M. S. S. P., Melo, L. F. M. D., Medeiros, M. J. C. D., Pontes, D. D. L., Scortecci, K. C., & Rocha, H. A. O. (2019). Caulerpa Cupressoides Var. Flabellata. Marine Drugs, 17(2), 105. https://doi.org/10.3390/md17020105
  • Bi, D., Yu, B., Han, Q., Lu, J., White, W. L., Lai, Q., Cai, N., Luo, W., Gu, L., Li, S., Xu, H., Hu, Z., Nie, S., & Xu, X. (2018). Immune activation of RAW264.7 macrophages by low molecular weight fucoidan extracted from New Zealand Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 66(41), 10721–10728. https://doi.org/10.1021/acs.jafc.8b03698
  • Biovia, D. (2016). Discovery Studio Modeling Environment, Release 2017. DassaultSystèmes. http://AccelrysCom/Products/Collaborative-Science/Biovia-Discoverystudio/Visualization Download Php 2016.
  • Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2021). Features, evaluation and treatment coronavirus (COVID-19). In StatPearls. StatPearls Publishing.
  • Chan, J. F. W., To, K. K. W., Tse, H., Jin, D. Y., & Yuen, K. Y. (2013). Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends in Microbiology, 21(10), 544–555. https://doi.org/10.1016/j.tim.2013.05.005
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Chiba, S., Ikushima, H., Ueki, H., Yanai, H., Kimura, Y., & Hangai, S. (2014). Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. ELife, https://doi.org/10.7554/eLife.04177
  • Damonte, E. B., Matulewicz, M. C., & Cerezo, A. S. (2004). Sulfated seaweed polysaccharides as antiviral agents. Current Medicinal Chemistry, 11(18), 2399–2419. https://doi.org/10.2174/0929867043364504
  • De Souza, L. M., Sassaki, G. L., Romanos, M. T. V., & Barreto-Bergter, E. (2012). Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Marine Drugs, 10(12), 918–931. https://doi.org/10.3390/md10040918
  • DeLano, W. L. (2014). The PyMOL Molecular Graphics System, Version 1.8. Schrödinger LLC.
  • Delattre, C., Fenoradosoa, T. A., & Michaud, P. (2011). Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Brazilian Archives of Biology and Technology, 54(6), 1075–1092. https://doi.org/10.1590/S1516-89132011000600002
  • Dictionary of Food Compounds with CD-ROM. (2013). Choice Reviews Online. https://doi.org/10.5860/choice.51-1824
  • Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A. M., Berger, A., Burguière, A.-M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.-C., Müller, S., … Doerr, H. W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England Journal of Medicine, 348(20), 1967–1976. https://doi.org/10.1056/NEJMoa030747
  • Duarte, M. E. R., Cauduro, J. P., Noseda, D. G., Noseda, M. D., Gonçalves, A. G., Pujol, C. A., Damonte, E. B., & Cerezo, A. S. (2004). The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydrate Research, 339(2), 335–347. https://doi.org/10.1016/j.carres.2003.09.028
  • Eccles, R. (2020). Iota-carrageenan as an antiviral treatment for the common cold. The Open Virology Journal, 14(1), 9–15. https://doi.org/10.2174/1874357902014010009
  • Elizondo-Gonzalez, R., Cruz-Suarez, L. E., Ricque-Marie, D., Mendoza-Gamboa, E., Rodriguez-Padilla, C., & Trejo-Avila, L. M. (2012). In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virology Journal, 9(1), 307. https://doi.org/10.1186/1743-422X-9-307
  • El-Sekaily, A., Helal, M., & Saad, A. (2020). Enhancement of immune tolerance of COVID-19 patients might be achieved with alginate supplemented therapy. International Journal of Cancer and Biomedical Research, 4(Special Issue), 21–26. https://jcbr.journals.ekb.eg/article_92759.html
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Fouchier, R. A. M., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stöhr, K., & Osterhaus, A. D. M. E. (2003). Koch’s postulates fulfilled for SARS virus. Nature, 423(6937), 240–240. https://doi.org/10.1038/423240a
  • Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., & Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 100(2), 446–454. https://doi.org/10.1016/j.antiviral.2013.09.015
  • Furuta, Y., Komeno, T., & Nakamura, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93(7), 449–463. https://doi.org/10.2183/pjab.93.027
  • Galili, U., Wigglesworth, K., & Abdel-Motal, U. M. (2010). Accelerated healing of skin burns by anti-Gal/α-gal liposomes interaction. Burns, 36(2), 239–251. https://doi.org/10.1016/j.burns.2009.04.002
  • Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S., & Underhill, D. M. (2003). Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. Journal of Experimental Medicine, 197(9), 1107–1117. https://doi.org/10.1084/jem.20021787
  • Gaussian 09. (n.d.) Revision A. 02.
  • Geerlings, P., Chamorro, E., Chattaraj, P. K., De Proft, F., Gázquez, J. L., Liu, S., Morell, C., Toro-Labbé, A., Vela, A., & Ayers, P. (2020). Conceptual density functional theory: Status, prospects, issues. Theoretical Chemistry Accounts, 139(2), 36. https://doi.org/10.1007/s00214-020-2546-7
  • Gustafson, K. R., Cardellina, J. H., Fuller, R. W., Weislow, O. S., Kiser, R. F., Snader, K. M., Patterson, G. M. L., & Boyd, M. R. (1989). AIDS-antiviral sulfolipids from cyanobacteria (Blue-Green Algae). Journal of the National Cancer Institute , 81(16), 1254–1258. https://doi.org/10.1093/jnci/81.16.1254
  • Hagar, M., Ahmed, H. A., Aljohani, G., & Alhaddad, O. A. (2020). Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. International Journal of Molecular Sciences, 21(11), 3922. https://doi.org/10.3390/ijms21113922
  • Herre, J., Gordon, S., & Brown, G. D. (2004). Dectin-1 and its role in the recognition of β-glucans by macrophages. Molecular Immunology, 40(12), 869–876. https://doi.org/10.1016/j.molimm.2003.10.007
  • International Pharmaceutical Federation. (2020). Coronavirus SARS-CoV-2/COVID-19 pandemic: Information and Guidelines for Pharmacists and the Pharmacy Workforce.
  • Jayameena, P, Sivakumari, K., Ashok, K., & Rajesh, S. (2018). In Silico Molecular Docking Studies of Rutin Compound against Apoptotic Proteins (Tumor Necrosis Factor, Caspase-3, NF-Kappa-B, P53, Collagenase, Nitric Oxide Synthase and Cytochrome C). Journal of Cancer Research and Treatment, 6(2), 28–33. https://doi.org/10.12691/jcrt-6-2-1
  • Kang, K. A., Lee, K. H., Chae, S., Zhang, R., Jung, M. S., Ham, Y. M., Baik, J. S., Lee, N. H., & Hyun, J. W. (2006). Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. Journal of Cellular Biochemistry, 97(3), 609–620. https://doi.org/10.1002/jcb.20668
  • Kaur, R., Sharma, M., Ji, D., Xu, M., & Agyei, D. (2019). Structural features, modification, and functionalities of beta-glucan. Fibers, 8(1), 1. https://doi.org/10.3390/fib8010001
  • Kim, J. A., & Lee, S. B. (2016). Production of 3,6-anhydro-D-galactose from κ-carrageenan using acid catalysts. Biotechnology and Bioprocess Engineering, 21(1), 79–86. https://doi.org/10.1007/s12257-015-0636-5
  • Kim, K., Ehrlich, A., Perng, V., Chase, J. A., Raybould, H., Li, X., Atwill, E. R., Whelan, R., Sokale, A., & Liu, Y. (2019). Algae-derived β-glucan enhanced gut health and immune responses of weaned pigs experimentally infected with a pathogenic E. coli. Animal Feed Science and Technology, 248, 114–125. https://doi.org/10.1016/j.anifeedsci.2018.12.004
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-10280-3
  • Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A.-E., Humphrey, C. D., Shieh, W.-J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., … Anderson, L. J. (2003). A novel coronavirus associated with severe acute respiratory syndrome. New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/NEJMoa030781
  • Lawson, C. J., & Rees, D. A. (1968). Reinvestigation of the acetolysis products of λ-carrageenan, revision of the structure of “α-1,3-galactotriose,” and a further example of the reverse specificities of glycoside hydrolysis and acetolysis. Journal of the Chemical Society C: Organic, 1301–1304. https://doi.org/10.1039/J39680001301
  • Lee, S. H., Kang, S. M., Sok, C. H., Hong, J. T., Oh, J. Y., & Jeon, Y. J. (2015). Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae, 30(2), 163–170. https://doi.org/10.4490/algae.2015.30.2.163
  • Liu, Q., Xu, S., Sha, Li, L., Pan, T., Ming, Shi, C., Lan., & Liu, H. (2017). In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydrate Polymers, 165, 189–196. https://doi.org/10.1016/j.carbpol.2017.02.032
  • Lo, M. K., Feldmann, F., Gary, J. M., Jordan, R., Bannister, R., Cronin, J., Patel, N. R., Klena, J. D., Nichol, S. T., Cihlar, T., Zaki, S. R., Feldmann, H., Spiropoulou, C. F., & de Wit, E. (2019). Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science Translational Medicine, 11(494), eaau9242. https://doi.org/10.1126/scitranslmed.aau9242
  • Mabeau, S., & Kloareg, B. (1987). Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. Journal of Experimental Botany, 38(9), 1573–1580. https://doi.org/10.1093/jxb/38.9.1573
  • Majumdar, D., Pal, T. k., Singh, D. K., Pandey, D. K., Parai, D., Bankura, K., & Mishra, D. (2020). DFT investigations of linear Zn3-type complex with compartmental N/O-donor Schiff base: Synthesis, characterizations, crystal structure, fluorescence and molecular docking. Journal of Molecular Structure, 1209, 127936. https://doi.org/10.1016/j.molstruc.2020.127936
  • Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., & Butterfield, Y. S. N. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/science.1085953
  • Mayer, A. M. S., Rodríguez, A. D., Taglialatela-Scafati, O., & Fusetani, N. (2013). Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 11(7), 2510–2573. https://doi.org/10.3390/md11072510
  • Meena, D. K., Das, P., Kumar, S., Mandal, S. C., Prusty, A. K., Singh, S. K., Akhtar, M. S., Behera, B. K., Kumar, K., Pal, A. K., & Mukherjee, S. C. (2013). Β-glucan: An ideal immunostimulant in aquaculture (a review). Fish Physiology and Biochemistry, 39(3), 431–457. https://doi.org/10.1007/s10695-012-9710-5
  • Minari, M. C., Rincão, V. P., Soares, S. A., Ricardo, N. M. P. S., Nozawa, C., & Linhares, R. E. C. (2011). Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1. Acta Virologica, 55(3), 255–259. https://doi.org/10.4149/av_2011_03_255
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Moura, A. P. V., Santos, L. C. B., Brito, C. R. N., Valencia, E., Junqueira, C., Filho, A. A. P., Sant’Anna, M. R. V., Gontijo, N. F., Bartholomeu, D. C., Fujiwara, R. T., Gazzinelli, R. T., McKay, C. S., Sanhueza, C. A., Finn, M. G., & Marques, A. F. (2017). Virus-like particle display of the α-gal carbohydrate for vaccination against Leishmania infection. ACS Central Science, 3(9), 1026–1031. https://doi.org/10.1021/acscentsci.7b00311
  • NIH. (2020). Phase 3 Efficacy and Safety Study of Favipiravir for Treatment of Uncomplicated Influenza in Adults - T705US316. Retrieved June 24, 2020, from https://clinicaltrials.gov/ct2/show/NCT02026349
  • O°Neill, A. N. (1955). Derivatives of 4-O-β-D-Galactopyranosyl-3,6-anhydro-D-galactose from k-Carrageenin. Journal of the American Chemical Society, 77, 6324–6326. https://doi.org/10.1021/ja01628a074
  • Oestereich, L., Lüdtke, A., Wurr, S., Rieger, T., Muñoz-Fontela, C., & Günther, S. (2014). Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 105, 17–21. https://doi.org/10.1016/j.antiviral.2014.02.014
  • Ohta, K., Mizushima, Y., Hirata, N., Takemura, M., Sugawara, F., Matsukage, A., Yoshida, S., & Sakaguchi, K. (1998). Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chemical and Pharmaceutical Bulletin, 46(4), 684–686. https://doi.org/10.1248/cpb.46.684
  • Paudel, P., Seong, S. H., Wu, S., Park, S., Jung, H. A., & Choi, J. S. (2019). Eckol as a potential therapeutic against neurodegenerative diseases targeting dopamine D3/D4 receptors. Marine Drugs, 17(2), 108. https://doi.org/10.3390/md17020108
  • Peiris, J., Lai, S. T., Poon, L., Guan, Y., Yam, L., Lim, W., Nicholls, J., Yee, W., Yan, W. W., Cheung, M. T., Cheng, V., Chan, K. H., Tsang, D., Yung, R., Ng, T. K., & Yuen, K. Y. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361(9366), 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2
  • Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
  • Plouguerné, E., de Souza, L., Sassaki, G., Cavalcanti, J., Villela Romanos, M., da Gama, B., Pereira, R., & Barreto-Bergter, E. (2013). Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Marine Drugs, 11(11), 4628–4640. https://doi.org/10.3390/md11114628
  • Raimundo, S. C., Pattathil, S., Eberhard, S., Hahn, M. G., & Popper, Z. A. (2017). β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls. Protoplasma, 254(2), 997–1016. https://doi.org/10.1007/s00709-016-1007-6
  • Rizvi, S. M. D., Shakil, S., & Haneef, M. (2013). A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI journal, 12, 831. https://doi.org/10.17877/DE290R-11534
  • Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., & Icenogle, J. P. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300(5624), 1394–1399. https://doi.org/10.1126/science.1085952
  • Schrödinger Release. (2019). Desmond molecular dynamics system. Schrödinger LLC.
  • Shirahashi, H., Murakami, N., Watanabe, M., Nagatsu, A., Sakakibara, J., Tokuda, H., Nishino, H., & Iwashima, A. (1993). Isolation and identification of anti-tumor-promoting principles from the fresh-water Cyanobacterium phormidium tenue. Chemical and Pharmaceutical Bulletin, 41(9), 1664–1666. https://doi.org/10.1248/cpb.41.1664
  • Shiraki, K., & Daikoku, T. (2020). Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & Therapeutics, 209, 107512. https://doi.org/10.1016/j.pharmthera.2020.107512
  • Singer, R., Derby, N., Rodriguez, A., Kizima, L., Kenney, J., Aravantinou, M., Chudolij, A., Gettie, A., Blanchard, J., Lifson, J. D., Piatak, M., Fernandez-Romero, J. A., Zydowsky, T. M., & Robbiani, M. (2011). The nonnucleoside reverse transcriptase inhibitor MIV-150 in Carrageenan gel prevents rectal transmission of simian/human immunodeficiency virus infection in macaques. Journal of Virology, 85(11), 5504–5512. https://doi.org/10.1128/JVI.02422-10
  • Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012–1023. https://doi.org/10.1093/nsr/nwaa036
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, W., Wang, S. X., & Guan, H. S. (2012). The antiviral activities and mechanisms of marine polysaccharides: An overview. Marine Drugs, 10(12), 2795–2816. https://doi.org/10.3390/md10122795
  • Wang, Z., Xie, J., Shen, M., Nie, S., & Xie, M. (2018). Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends in Food Science & Technology, 74, 147–157. https://doi.org/10.1016/j.tifs.2018.02.010
  • Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews, 69(4), 635–664. https://doi.org/10.1128/MMBR.69.4.635-664.2005
  • WHO. (2015). WHO | Update 79 – Situation in China.
  • WHO. (2020a). Naming the coronavirus disease (COVID-19) and the virus that causes it. Retrieved July 2, 2020, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
  • WHO. (2020b). Prioritizing diseases for research and development in emergency contexts. Retrieved July 4, 2020, from https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts
  • Xianliang, X., Meiyu, G., Huashi, G., & Zelin, L. (2000). Study on the mechanism of inhibitory action of 911 on replication of HIV-1 in vitro. Zhongguo hai Yang yao wu= Chinese Journal of Marine Drugs, 19(4), 15–18.
  • Yilmaz, B., Portugal, S., Tran, T. M., Gozzelino, R., Ramos, S., Gomes, J., Regalado, A., Cowan, P. J., d’Apice, A. J. F., Chong, A. S., Doumbo, O. K., Traore, B., Crompton, P. D., Silveira, H., & Soares, M. P. (2014). Gut microbiota elicits a protective immune response against malaria transmission. Cell, 159(6), 1277–1289. https://doi.org/10.1016/j.cell.2014.10.053
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.