180
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 9235-9252 | Received 26 Jan 2021, Accepted 28 Apr 2021, Published online: 17 May 2021

References

  • Ahmed, A. J., Smith, H. T., Smith, M. B., & Millett, F. S. (1978). Effect of specific lysine modification on the reduction of cytochrome c by succinate-cytochrome c reductase. Biochemistry, 17(13), 2479–2483. https://doi.org/10.1021/bi00606a003
  • Ahuja, S., Jahr, N., Im, S.-C., Vivekanandan, S., Popovych, N., Le Clair, S. V., Huang, R., Soong, R., Xu, J., & Yamamoto, K. (2013). A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. Journal of Biological Chemistry, 288, 22080–22095. https://doi.org/10.1074/jbc.M112.448225
  • Allen, J. W., Daltrop, O., Stevens, J. M., & Ferguson, S. J. (2003). C-type cytochromes: Diverse structures and biogenesis systems pose evolutionary problems. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358, 255–266. https://doi.org/10.1098/rstb.2002.1192
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 27, 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Barker, P. D., & Ferguson, S. J. (1999). Still a puzzle: Why is HAEM covalently attached in c-type cytochromes? Structure, 7(12), R281–R290. https://doi.org/10.1016/S0969-2126(00)88334-3
  • Bart, A. G., & Scott, E. E. (2017). Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. Journal of Biological Chemistry, 292, 20818–20833. https://doi.org/10.1074/jbc.RA117.000220
  • Battistuzzi, G., Borsari, M., Cowan, J. A., Ranieri, A., & Sola, M. (2002). Control of cytochrome c redox potential: Axial ligation and protein environment effects. Journal of the American Chemical Society, 124, 5315–5324. https://doi.org/10.1021/ja017479v
  • Battistuzzi, G., Borsari, M., & Sola, M. (2001). Medium and temperature effects on the redox chemistry of cytochrome c. European Journal of Inorganic Chemistry, 2001(12), 2989–3004. https://doi.org/10.1002/1099-0682(200112)2001:12<2989::AID-EJIC2989>3.0.CO;2-E
  • Bertini, I., Cavallaro, G., & Rosato, A. (2006). Cytochrome c: Occurrence and functions. Chemical Reviews, 106, 90–115. https://doi.org/10.1021/cr050241v
  • Bostick, C. D., Hickey, K. M., Wollenberg, L. A., Flora, D. R., Tracy, T. S., & Gannett, P. M. (2016). Immobilized cytochrome P450 for monitoring of P450-P450 interactions and metabolism. Drug Metabolism and Disposition, 44, 741–749. https://doi.org/10.1124/dmd.115.067637
  • Burnett, J. C., & Nguyen, T. L. (2011). Is stoichiometry a new metric for evaluating folded proteins? Journal of Biomolecular Structure and Dynamics, 28, 641–642. https://doi.org/10.1080/073911011010524973
  • Burris-Hiday, S. D., & Scott, E. E. (2020). Protein/protein interactions in the human cytochrome P450 system. The FASEB Journal, 34(S1), 1–1. https://doi.org/10.1096/fasebj.2020.34.s1.04870
  • Cheng, M.-C., Rich, A. M., Armstrong, R. S., Ellis, P. J., & Lay, P. A. (1999). Determination of iron − ligand bond lengths in ferric and ferrous horse heart cytochrome c using multiple-scattering analyses of XAFS data. Inorganic Chemistry, 38(25), 5703–5708. https://doi.org/10.1021/ic990395r
  • Clarke, T. A., Im, S.-C., Bidwai, A., & Waskell, L. (2004). The role of the length and sequence of the linker domain of cytochrome b5 in stimulating cytochrome P450 2B4 catalysis. Journal of Biological Chemistry, 279, 36809–36818. https://doi.org/10.1074/jbc.M406055200
  • Dailey, H. A., & Strittmatter, P. (1979). Modification and identification of cytochrome b5 carboxyl groups involved in protein-protein interaction with cytochrome b5 reductase. Journal of Biological Chemistry, 254(12), 5388–5396. https://doi.org/10.1016/S0021-9258(18)50608-6
  • Davydov, D. R., Davydova, N. Y., Sineva, E. V., & Halpert, J. R. (2015). Interactions among cytochromes P450 in microsomal membranes oligomerization OF cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences. Journal of Biological Chemistry, 290, 3850–3864. https://doi.org/10.1074/jbc.M114.615443
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976). Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. Journal of Biological Chemistry, 251(4), 1104–1115. https://doi.org/10.1016/S0021-9258(17)33807-3
  • Fujikawa, M., Kobayashi, K., Tsutsui, Y., Tanaka, T., & Kozawa, T. (2017). Rational tuning of superoxide sensitivity in SoxR, the [2Fe-2S] transcription factor: Implications of species-specific lysine residues. Biochemistry, 56, 403–410. https://doi.org/10.1021/acs.biochem.6b01096
  • Gade, S. K., Bhattacharya, S., & Manoj, K. M. (2012). Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochemical and Biophysical Research Communications, 419, 211–214. https://doi.org/10.1016/j.bbrc.2012.01.149
  • Gao, Q., Doneanu, C. E., Shaffer, S. A., Adman, E. T., Goodlett, D. R., & Nelson, S. D. (2006). Identification of the interactions between cytochrome P450 2E1 and cytochrome b5 by mass spectrometry and site-directed mutagenesis. Journal of Biological Chemistry, 281, 20404–20417. https://doi.org/10.1074/jbc.M601785200
  • Gideon, D. A., Kumari, R., Lynn, A. M., & Manoj, K. M. (2012). What is the functional role of N-terminal transmembrane helices in the metabolism mediated by liver microsomal cytochrome P450 and its reductase? Cell Biochemistry and Biophysics, 63(1), 35–45. https://doi.org/10.1007/s12013-012-9339-0
  • Gideon, D. A., Nirusimhan, V., & Manoj, K. M. (2020). Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1835715
  • Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., & Marcaccio, M. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122, 221–233. https://doi.org/10.1016/j.cell.2005.05.011
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Guengerich, F. P. (2005). Reduction of cytochrome b5 by NADPH–cytochrome P450 reductase. Archives of Biochemistry and Biophysics, 440, 204–211. https://doi.org/10.1016/j.abb.2005.06.019
  • Hunte, C., Solmaz, S., & Lange, C. (2002). Electron transfer between yeast cytochrome bc1 complex and cytochrome c: A structural analysis. Biochimica et Biophysica Acta (BBA) - Bioenergetics , 1555(1-3), 21–28. https://doi.org/10.1016/S0005-2728(02)00249-9
  • Hüttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., Doan, J. W., & Lee, I. (2011). The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion, 11, 369–381. https://doi.org/10.1016/j.mito.2011.01.010
  • Im, S. C., & Waskell, L. (2011). The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b5. Archives of Biochemistry and Biophysics, 507(1), 144–153. https://doi.org/10.1016/j.abb.2010.10.023
  • Jerabek, P., Florian, J., & Martinek, V. (2016). Membrane-anchored cytochrome P450 1A2–cytochrome b5 complex features an x-shaped contact between antiparallel transmembrane helices. Chemical Research in Toxicology, 29, 626–636. https://doi.org/10.1021/acs.chemrestox.5b00349
  • Kalpage, H. A., Wan, J., Morse, P. T., Zurek, M. P., Turner, A. A., Khobeir, A., Yazdi, N., Hakim, L., Liu, J., Vaishnav, A., Sanderson, T. H., Recanati, M.-A., Grossman, L. I., Lee, I., Edwards, B. F. P., & Hüttemann, M. (2020). Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. The International Journal of Biochemistry & Cell Biology, 121, 105704. https://doi.org/10.1016/j.biocel.2020.105704
  • Kandel, S. E., & Lampe, J. N. (2014). Role of protein–protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Chemical Research in Toxicology, 27, 1474–1486. https://doi.org/10.1021/tx500203s
  • Kaspera, R., Naraharisetti, S. B., Evangelista, E. A., Marciante, K. D., Psaty, B. M., & Totah, R. A. (2011). Drug metabolism by CYP2C8. 3 is determined by substrate dependent interactions with cytochrome P450 reductase and cytochrome b5. Biochemical Pharmacology, 82, 681–691. https://doi.org/10.1016/j.bcp.2011.06.027
  • König, B., Osheroff, N., Wilms, J., Muijsers, A., Dekker, H., & Margoliash, E. (1980). Mapping of the interaction domain for purified cytochrome c 1 on cytochrome c. FEBS Letters, 111, 395–398. https://doi.org/10.1016/0014-5793(80)80835-0
  • Lange, C., & Hunte, C. (2002). Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proceedings of the National Academy of Sciences, 99, 2800–2805. https://doi.org/10.1073/pnas.052704699
  • Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate (s) and the reaction components play multiple roles in the overall process. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764, 1325–1339. https://doi.org/10.1016/j.bbapap.2006.05.012
  • Manoj, K. M. (2018). Aerobic Respiration: Criticism of the proton-centric explanation involving rotary adenosine triphosphate synthesis, chemiosmosis principle, proton pumps and electron transport chain. Biochemistry Insights, 11, 1178626418818442. https://doi.org/10.1177/1178626418818442
  • Manoj, K. M., Baburaj, A., Ephraim, B., Pappachan, F., Maviliparambathu, P. P., Vijayan, U. K., Narayanan, S. V., Periasamy, K., George, E. A., & Mathew, L. T. (2010a). Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PloS One., 5, e10601. https://doi.org/10.1371/journal.pone.0010601
  • Manoj, K. M., & Bazhin, N. M. (2019). Murburn Precepts of Aerobic Respiration. OSF, https://doi.org/10.31219/osf.io/hx4p9
  • Manoj, K. M., Gade, S. K., & Mathew, L. (2010b). Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PLoS One., 5, e13272. https://doi.org/10.1371/journal.pone.0013272
  • Manoj, K. M., Gade, S. K., Venkatachalam, A., & Gideon, D. A. (2016a). Electron transfer amongst flavo-and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Advances, 6(29), 24121–24129. https://doi.org/10.1039/C5RA26122H
  • Manoj, K. M., Gideon, D. A., Jacob, V. D., Haarith, D., & Manekkathodi, A. (2020a). Is Z-scheme a tenable explanation for the light reaction of oxygenic photosynthesis? OSF, https://doi.org/10.31219/osf.io/v6tdf
  • Manoj, K. M., Gideon, D. A., Parashar, A. (2020b). Refuting the ideas advocated by Yuly et al. (PNAS, Sep. 2020):‘Universal free energy landscapes’ and ‘deterministic electron-relay circuitry’are unsustainable within membrane-embedded cytochrome b protein complexes involved in bioenergetic routines. OSF. https://doi.org/10.31219/osf.io/4vmct
  • Manoj, K. M., Gideon, D. A., & Parashar, A. (2021). What is the role of lipid membrane-embedded quinones in mitochondria and chloroplasts? chemiosmotic Q-cycle versus Murburn reaction perspective. Cell Biochemistry and Biophysics, 79(1), 3–10. https://doi.org/10.1007/s12013-020-00945-y
  • Manoj, K. M., Gideon, D. A., Parashar, A., Haarith, D., & Manekkathodi, A. (2020d). Microsomal xenobiotic metabolism, mitochondrial oxidative phosphorylation and cyanobacterial photorespiration have common murburn mechanistic underpinnings with chloroplastid photosynthetic physiology. OSF, https://doi.org/10.31219/osf.io/8p2sx
  • Manoj, K. M., & Hager, L. P. (2008). Chloroperoxidase, a Janus enzyme. Biochemistry, 47, 2997–3003. https://doi.org/10.1021/bi7022656
  • Manoj, K. M., Nikolai, B., Parashar, A., Gideon, D. A., Jacob, V. D., Haarith, D., & Manekkathodi, A. (2020e). Murburn precepts for the light reaction of oxygenic photosynthesis. OSF, https://doi.org/10.31219/osf.io/95brg
  • Manoj, K. M., & Parashar, A. (2021). Murburn precepts for cytochrome P450 mediated drug/xenobiotic metabolism. Current Drug Metabolism, https://doi.org/10.2174/1389200222666210118102230
  • Manoj, K. M., Parashar, A., David Jacob, V., & Ramasamy, S. (2019a). Aerobic respiration: Proof of concept for the oxygen-centric Murburn perspective. Journal of Biomolecular Structure and Dynamics, 37, 4542–4556. https://doi.org/10.1080/07391102.2018.1552896
  • Manoj, K. M., Parashar, A., Gade, S. K., & Venkatachalam, A. (2016b). Functioning of microsomal cytochrome P450s: Murburn concept explains the metabolism of xenobiotics in hepatocytes. Frontiers in Pharmacology, 7, 161. https://doi.org/10.3389/fphar.2016.00161
  • Manoj, K. M., Parashar, A., Venkatachalam, A., Goyal, S., Singh, P. G., Gade, S. K., Periyasami, K., Jacob, R. S., Sardar, D., & Singh, S. (2016c). Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie, 125, 91–111. https://doi.org/10.1016/j.biochi.2016.03.003
  • Manoj, K. M., Ramasamy, S., Parashar, A., Gideon, D. A., Soman, V., Jacob, V. D., & Pakshirajan, K. (2020f). Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomolecular Concepts, 11, 32–56. https://doi.org/10.1515/bmc-2020-0004
  • Manoj, K. M., & Soman, V. (2020). Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective. Toxicology, 432, 152369–152369. https://doi.org/10.1016/j.tox.2020.152369
  • Manoj, K. M., Soman, V., David Jacob, V., Parashar, A., Gideon, D. A., Kumar, M., Manekkathodi, A., Ramasamy, S., Pakshirajan, K., & Bazhin, N. M. (2019b). Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Archives of Biochemistry and Biophysics, 676, 108128–108128. https://doi.org/10.1016/j.abb.2019.108128
  • Mauk, M. R., & Mauk, A. G. (1982). Interaction between cytochrome b5 and human methemoglobin. Biochemistry, 21, 4730–4734. https://doi.org/10.1021/bi00262a032
  • McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22), 6049–6055. https://doi.org/10.1016/S0021-9258(18)63504-5
  • Mittal, A., Changani, A. M., Taparia, S., Goel, D., Parihar, A., & Singh, I. (2020). Structural disorder originates beyond narrow stoichiometric margins of amino acids in naturally occurring folded proteins. Journal of Biomolecular Structure and Dynamics, 39, 1–12. https://doi.org/10.1080/07391102.2020.1751299
  • Mittal, A., Jayaram, B., Shenoy, S., & Bawa, T. S. (2010). A stoichiometry driven universal spatial organization of backbones of folded proteins: Are there Chargaff's rules for protein folding? Journal of Biomolecular Structure and Dynamics, 28, 133–142. https://doi.org/10.1080/07391102.2010.10507349
  • Moreno-Beltrán, B., Díaz-Quintana, A., González-Arzola, K., Velázquez-Campoy, A., Miguel, A., & Díaz-Moreno, I. (2014). Cytochrome c1 exhibits two binding sites for cytochrome c in plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837, 1717–1729. https://doi.org/10.1016/j.bbabio.2014.07.017
  • Mulrooney, S. B., Meinhardt, D. R., & Waskell, L. (2004). The α-helical membrane spanning domain of cytochrome b5 interacts with cytochrome P450 via nonspecific interactions. Biochimica et Biophysica Acta (BBA)-General Subjects, 1674, 319–326. https://doi.org/10.1016/j.bbagen.2004.08.001
  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C
  • Nisimoto, Y., & Lambeth, J. D. (1985). NADPH-cytochrome P-450 reductase-cytochrome b5 interactions: Crosslinking of the phospholipid vesicle-associated proteins by a water-soluble carbodiimide. Archives of Biochemistry and Biophysics, 241, 386–396. https://doi.org/10.1016/0003-9861(85)90561-2
  • Northrup, S. H., Boles, J. O., & Reynolds, J. (1988). Brownian dynamics of cytochrome c and cytochrome c peroxidase association. Science, 241, 67–70. https://doi.org/10.1126/science.2838904
  • Oshino, N., Imai, Y., & Sato, R. (1971). A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. The Journal of Biochemistry, 69, 155–167. https://doi.org/10.1093/oxfordjournals.jbchem.a129444
  • Parashar, A., Gade, S. K., Potnuru, M., Madhavan, N., & Manoj, K. M. (2014). The curious case of benzbromarone: Insight into super-inhibition of cytochrome P450. PLoS One., 9, e89967. https://doi.org/10.1371/journal.pone.0089967
  • Parashar, A., Gideon, D. A., & Manoj, K. M. (2018). Murburn concept: A molecular explanation for hormetic and idiosyncratic dose responses. Dose-Response, 16, 1559325818774421. https://doi.org/10.1177/1559325818774421
  • Parashar, A., & Manoj, K. M. (2012). Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochemical and Biophysical Research Communications, 417, 1041–1045. https://doi.org/10.1016/j.bbrc.2011.12.090
  • Parashar, A., & Manoj, K. M. (2021). Murburn precepts for cytochrome P450 mediated drug/xenobiotic metabolism and homeostasis. Current Drug Metabolism, 22. https://doi.org/10.2174/1389200222666210118102230
  • Pelletier, H., & Kraut, J. (1992). Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science, 258, 1748–1755. https://doi.org/10.1126/science.1334573
  • Pérez-Mejías, G., Olloqui-Sariego, J. L., Guerra-Castellano, A., Díaz-Quintana, A., Calvente, J. J., Andreu, R., Miguel, A., & Díaz-Moreno, I. (2020). Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861, 148277. https://doi.org/10.1016/j.bbabio.2020.148277
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. https://doi.org/10.1002/jcc.20084
  • Porter, T. D. (2002). The roles of cytochrome b5 in cytochrome P450 reactions. Journal of Biochemical and Molecular Toxicology, 16, 311–316. https://doi.org/10.1002/jbt.10052
  • Qian, C., Yao, Y., Ye, K., Wang, J., Tang, W., Wang, Y., Wang, W., Lu, J., Xie, Y., & Huang, Z. (2001). Effects of charged amino‐acid mutation on the solution structure of cytochrome b5 and binding between cytochrome b5 and cytochrome c. Protein Science, 10, 2451–2459. https://doi.org/10.1110/ps.ps.12401
  • Qian, W., Sun, Y.-L., Wang, Y.-H., Zhuang, J.-H., Xie, Y., & Huang, Z.-X. (1998). The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Biochemistry, 37, 14137–14150. https://doi.org/10.1021/bi9805036
  • Reed, J. R., & Backes, W. L. (2012). Formation of P450. P450 complexes and their effect on P450 function. Pharmacology & Therapeutics, 133(3), 299–310. https://doi.org/10.1016/j.pharmthera.2011.11.009
  • Reed, J. R., & Backes, W. L. (2017). Physical studies of P450–P450 interactions: Predicting quaternary structures of P450 complexes in membranes from their X-ray crystal structures. Frontiers in Pharmacology, 8, 28. https://doi.org/10.3389/fphar.2017.00028
  • Rice, P., Longden, I., Bleasby, A. (2000). EMBOSS: the European molecular biology open software suite (Elsevier current trends). https://doi.org/10.1016/S0168-9525(00)02024-2
  • Roberts, V. A., & Pique, M. E. (1999). Definition of the interaction domain for cytochrome c on cytochrome c oxidase III. Prediction of the docked complex by a complete, systematic search. Journal of Biological Chemistry, 274, 38051–38060. https://doi.org/10.1074/jbc.274.53.38051
  • Rodgers, K. K., & Sligar, S. G. (1991). Mapping electrostatic interactions in macromolecular associations. Journal of Molecular Biology, 221, 1453–1460. https://doi.org/10.1016/0022-2836(91)90945-3
  • Salamon, Z., & Tollin, G. (1996). Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase. Biophysical Journal, 71(2), 848–857. https://doi.org/10.1016/S0006-3495(96)79286-X
  • Salemme, F. (1977). Structure and function of cytochromes c. Annual Review of Biochemistry, 46, 299–330. https://doi.org/10.1146/annurev.bi.46.070177.001503
  • Samhan-Arias, A. K., Almeida, R. M., Ramos, S., Cordas, C. M., Moura, I., Gutierrez-Merino, C., & Moura, J. J. (2018). Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1859, 78–87. https://doi.org/10.1016/j.bbabio.2017.10.005
  • Sarewicz, M., Borek, A., Daldal, F., Froncisz, W., & Osyczka, A. (2008). Demonstration of Short-lived Complexes of Cytochrome c with Cytochrome bc1 by EPR Spectroscopy- Implications for the mechanism of interprotein electron transfer. Journal of Biological Chemistry, 283, 24826–24836. https://doi.org/10.1074/jbc.M802174200
  • Sato, W., Hitaoka, S., Inoue, K., Imai, M., Saio, T., Uchida, T., Shinzawa-Itoh, K., Yoshikawa, S., Yoshizawa, K., & Ishimori, K. (2016). Energetic mechanism of cytochrome c-cytochrome c oxidase electron transfer complex formation under turnover conditions revealed by mutational effects and docking simulation. Journal of Biological Chemistry, 291, 15320–15331. https://doi.org/10.1074/jbc.M115.708065
  • Scharlau, M., Geren, L., Zhen, E. Y., Ma, L., Rajagukguk, R., Ferguson-Miller, S., Durham, B., & Millett, F. (2019). Definition of the interaction domain and electron transfer route between cytochrome c and cytochrome oxidase. Biochemistry, 58, 4125–4135. https://doi.org/10.1021/acs.biochem.9b00646
  • Schenkman, J. B., & Jansson, I. (2003). The many roles of cytochrome b5. Pharmacology & Therapeutics, 97(2), 139–152. https://doi.org/10.1016/S0163-7258(02)00327-3
  • Sergeev, G., Gilep, A., & Usanov, S. (2014). The role of cytochrome b5 structural domains in interaction with cytochromes P450. Biochemistry (Moscow), 79, 406–416. https://doi.org/10.1134/S0006297914050046
  • Shimada, S., Shinzawa‐Itoh, K., Baba, J., Aoe, S., Shimada, A., Yamashita, E., Kang, J., Tateno, M., Yoshikawa, S., & Tsukihara, T. (2017). Complex structure of cytochrome c–cytochrome c oxidase reveals a novel protein–protein interaction mode. The EMBO Journal, 36(3), 291–300. https://doi.org/10.15252/embj.201695021
  • Shimada, T., Mernaugh, R. L., & Guengerich, F. P. (2005). Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5 enzymes. Archives of Biochemistry and Biophysics, 435, 207–216. https://doi.org/10.1016/j.abb.2004.12.008
  • Sobrado, P., Goren, M. A., James, D., Amundson, C. K., & Fox, B. G. (2008). A Protein Structure Initiative approach to expression, purification, and in situ delivery of human cytochrome b5 to membrane vesicles. Protein Expression and Purification, 58, 229–241. https://doi.org/10.1016/j.pep.2007.11.018
  • Soulère, L., Delplace, P., Davioud-Charvet, E., Py, S., Sergheraert, C., Périé, J., Ricard, I., Hoffmann, P., & Dive, D. (2003). Screening of Plasmodium falciparum iron superoxide dismutase inhibitors and accuracy of the SOD-assays. Bioorganic & Medicinal Chemistry, 11(23), 4941–4944. https://doi.org/10.1016/j.bmc.2003.09.011
  • Speck, S. H., Ferguson-Miller, S., Osheroff, N., & Margoliash, E. (1979). Definition of cytochrome c binding domains by chemical modification: Kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain. Proceedings of the National Academy of Sciences of the United States of America, 76, 155–159. https://doi.org/10.1073/pnas.76.1.155
  • Šrejber, M., Navrátilová, V., Paloncýová, M., Bazgier, V., Berka, K., Anzenbacher, P., & Otyepka, M. (2018). Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry, 183, 117–136. https://doi.org/10.1016/j.jinorgbio.2018.03.002
  • Tian, H., Sadoski, R., Zhang, L., Yu, C.-A., Yu, L., Durham, B., & Millett, F. (2000). Definition of the interaction domain for cytochrome c on the cytochrome bc1 complex steady-state and rapid kinetic analysis of electron transfer between cytochrome c and Rhodobacter sphaeroides cytochrome bc1 surface mutants. Journal of Biological Chemistry, 275, 9587–9595. https://doi.org/10.1074/jbc.275.13.9587
  • Tiwari, P. B., Chapagain, P. P., & Üren, A. (2018). Investigating molecular interactions between oxidized neuroglobin and cytochrome c. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-28836-6
  • Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: A web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 27, 2915–2916. https://doi.org/10.1093/bioinformatics/btr484
  • Venkatachalam, A., Parashar, A., & Manoj, K. M. (2016). Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme ‘active site’ pocket plays a relatively ‘passive role’ in some enzyme-substrate interactions. In Silico Pharmacology, 4, 1–1. https://doi.org/10.1186/s40203-016-0016-7
  • Vergeres, G., & Waskell, L. (1995). Cytochrome b5, its functions, structure and membrane topology. Biochimie, 77, 604–620. https://doi.org/10.1016/0300-9084(96)88176-4
  • Volkov, A. N., Nicholls, P., & Worrall, J. A. (2011). The complex of cytochrome c and cytochrome c peroxidase: The end of the road? Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 1482–1503. https://doi.org/10.1016/j.bbabio.2011.07.010
  • Volkov, A. N., & van Nuland, N. A. (2012). Electron transfer interactome of cytochrome c. PLoS Computational Biology, 8, e1002807. https://doi.org/10.1371/journal.pcbi.1002807
  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Witt, H., Zickermann, V., & Ludwig, B. (1995). Site-directed mutagenesis of cytochrome c oxidase reveals two acidic residues involved in the binding of cytochrome c. Biochimica et Biophysica Acta (BBA) - Bioenergetics , 1230(1-2), 74–76. https://doi.org/10.1016/0005-2728(95)00050-S
  • Wu, F. F., Vergeres, G., & Waskell, L. (1994). Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain. Archives of Biochemistry and Biophysics, 308, 380–386. https://doi.org/10.1006/abbi.1994.1054
  • Zaidi, S., Hassan, M. I., Islam, A., & Ahmad, F. (2014). The role of key residues in structure, function, and stability of cytochrome-c. Cellular and Molecular Life Sciences, 71, 229–255. https://doi.org/10.1007/s00018-013-1341-1
  • Zhang, H., Im, S.-C., & Waskell, L. (2007). Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. Journal of Biological Chemistry, 282(41), 29766–29776. https://doi.org/10.1074/jbc.M703845200
  • Zhen, Y., Hoganson, C. W., Babcock, G. T., & Ferguson-Miller, S. (1999). Definition of the interaction domain for cytochrome c on cytochrome c oxidase I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit II of Rhodobacter sphaeroides cytochrome aa3. Journal of Biological Chemistry, 274, 38032–38041. https://doi.org/10.1074/jbc.274.53.38032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.