312
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Hemoglobin catalyzes ATP-synthesis in human erythrocytes: a murburn model

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 8783-8795 | Received 01 Mar 2021, Accepted 08 Apr 2021, Published online: 17 May 2021

References

  • Balagopalakrishna, C., Manoharan, P. T., Abugo, O. O., & Rifkind, J. M. (1996). Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions. Biochemistry, 35, 6393–6398. https://doi.org/10.1021/bi952875+
  • Banerjee, M., Chakrabarti, A., & Basu, S. (2012). Oxidative interaction between oxyHb and ATP: A spectroscopic study. The Journal of Physical Chemistry B, 116, 6150–6157. https://doi.org/10.1021/jp302899t
  • Benesch, R., & Benesch, R. E. (1967). The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochemical and Biophysical Research Communications, 26, 162–167. https://doi.org/10.1016/0006-291X(67)90228-8
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. WH Freeman.
  • Bryk, A. H., & Wiśniewski, J. R. (2017). Quantitative analysis of human red blood cell proteome. Journal of Proteome Research, 16, 2752–2761. https://doi.org/10.1021/acs.jproteome.7b00025
  • Cashon, R., Bonaventura, C., Bonaventura, J., & Focesi, A. (1986). The nicotinamide adenine dinucleotides as allosteric effectors of human hemoglobin. Journal of Biological Chemistry, 261(27), 12700–12705. https://doi.org/10.1016/S0021-9258(18)67148-0
  • Chowdhury, A., Dasgupta, R., & Majumder, S. K. (2017). Changes in hemoglobin–oxygen affinity with shape variations of red blood cells. Journal of Biomedical Optics, 22, 105006. https://doi.org/10.1117/1.JBO.22.10.105006
  • Cox, M. M., & Nelson, D. L. (2008). Lehninger principles of biochemistry. WH Freeman.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Ellsworth, M. L., Ellis, C. G., & Sprague, R. S. (2016). Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle. Acta Physiologica, 216, 265–276. https://doi.org/10.1111/apha.12596
  • Ellsworth, M. L., Graham, M. R., & Achilleus, D. (2006). Reactive oxygen species and erythrocyte-released ATP: Is there a connection. The FASEB Journal, 20, A273–A273.
  • Ellsworth, M. L., & Sprague, R. S. (2012). Regulation of blood flow distribution in skeletal muscle: Role of erythrocyte-released ATP. The Journal of Physiology, 590, 4985–4991. https://doi.org/10.1113/jphysiol.2012.233106
  • Forli, W., Halliday, S., Belew, R., & Olson, A. J. (2012). AutoDock Version 4.2. Journal of Medicinal Chemistry, 55, 623–638. https://doi.org/10.1021/jm2005145
  • Garrett, R. H., & Grisham, C. M. (1999). Biochemistry. Saunders College Publishing.
  • Gideon, D. A., Nirusimhan, V., & Manoj, K. M. (2020, October). Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1835715
  • Giulivi, C., Hochstein, P., & Davies, K. J. (1994). Hydrogen peroxide production by red blood cells. Free Radical Biology and Medicine, 16(1), 123–129. https://doi.org/10.1016/0891-5849(94)90249-6
  • González-Alonso, J., Olsen, D. B., & Saltin, B. (2002). Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of circulating ATP. Circulation Research, 91(11), 1046–1055. https://doi.org/10.1161/01.RES.0000044939.73286.E2
  • Grancara, S., Zonta, F., Ohkubo, S., Brunati, A. M., Agostinelli, E., & Toninello, A. (2015). Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: The role of tyrosine phosphorylation. Amino Acids, 47, 869–883. https://doi.org/10.1007/s00726-015-1964-7
  • Gupta, R. K., Benovic, J. L., & Rose, Z. B. (1978). Magnetic resonance studies of the binding of ATP and cations to human hemoglobin. The Journal of Biological Chemistry, 253, 6165–6171. https://doi.org/10.1016/S0021-9258(17)34594-5
  • Harlow, G. R., & Halpert, J. R. (1998). Analysis of human cytochrome P450 3A4 cooperativity: Construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proceedings of the National Academy of Sciences, 95, 6636–6641. https://doi.org/10.1073/pnas.95.12.6636
  • Inohara, K., Kimura, I., & Yuan, C. (2013). Suppressive effect of ATP on autoxidation of tuna oxymyoglobin to metmyoglobin. Fisheries Science, 79(3), 503–511. https://doi.org/10.1007/s12562-013-0622-9
  • Jacob, V. D., & Manoj, K. M. (2019). Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology, 10, 7–16. https://doi.org/10.14748/adipo.v10.6534
  • Jensen, K. P., & Ryde, U. (2004). How O2 binds to heme: Reasons for rapid binding and spin inversion. Journal of Biological Chemistry, 279(15), 14561–14569. https://doi.org/10.1074/jbc.M314007200
  • Kitao, T., Sugita, Y., Yoneyama, Y., & Hattori, K. (1974). Methemoglobin reductase (cytochrome b5 reductase) deficiency in congenital methemoglobinemia. Blood, 44(6), 879–884.
  • Lo, H. H., & Schimmel, P. R. (1969). Interaction of human hemoglobin with adenine nucleotides. The Journal of Biological Chemistry, 244, 5084–5086. https://doi.org/10.1016/S0021-9258(18)94313-9
  • Lu, S.-J., Feng, Q., Park, J. S., Vida, L., Lee, B.-S., Strausbauch, M., Wettstein, P. J., Honig, G. R., & Lanza, R. (2008). Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood. The Journal of the American Society of Hematology, 112, 4475–4484. https://doi.org/10.1182/blood-2008-05-157198
  • Mailer, K. (1990). Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochemical and Biophysical Research Communications, 170(1), 59–64. https://doi.org/10.1016/0006-291X(90)91240-S
  • Manoj, K. M., Gade, S. K., & Mathew, L. (2010). Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PLoS One, 5(10), e13272.  https://doi.org/10.1371/journal.pone.0013272
  • Manoj, K. M., Parashar, A., Venkatachalam, A., Goyal, S., Singh, P. G., Gade, S. K., Periyasami, K., Jacob, R. S., Sardar, D., Singh, S., et al. (2016b). Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals’ obligatory involvement in such redox reactions. Biochimie, 125, 91–111. https://doi.org/10.1016/j.biochi.2016.03.003
  • Manoj, K. M., & Bazhin, N. M. (2019). Murburn Precepts of Aerobic Respiration. OSF Prepr. https://doi.org/10.31219/osf.io/hx4p9
  • Manoj, K. M., Parashar, A., David Jacob, V., & Ramasamy, S. (2019a). Aerobic respiration: Proof of concept for the oxygen-centric murburn perspective. Journal of Biomolecular Structure and Dynamics, 37, 4542–4556. https://doi.org/10.1080/07391102.2018.1552896
  • Manoj, K. M., Soman, V., Jacob, V. D., Parashar, A., Gideon, D.A., Kumar, M., Manekkathodi, A., Ramasamy, S., Pakshirajan, K., & Bazhin, N. M. (2019b). Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Archives of Biochemistry and Biophysics, 676, 108128. https://doi.org/10.1016/j.abb.2019.108128
  • Manoj, K. M., Gade, S. K., Venkatachalam, A., & Gideon, D. A. (2016c). Electron transfer amongst flavo- and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Advances, 6(29), 24121–24129. https://doi.org/10.1039/C5RA26122H
  • Manoj, K. M., & Manekkathodi, A. (2021). Light's interaction with pigments in chloroplasts: The murburn perspective. Journal of Photochemistry and Photobiology, 5, 100015. https://doi.org/10.1016/j.jpap.2020.100015
  • Manoj, K. M., Parashar, A., Gade, S. K., & Venkatachalam, A. (2016a). Functioning of microsomal cytochrome P450s: Murburn concept explains the metabolism of xenobiotics in hepatocytes. Frontiers in Pharmacology, 7, 161. https://doi.org/10.3389/fphar.2016.00161
  • Manoj, K. M., Ramasamy, S., Parashar, A., Gideon, D. A., Soman, V., Jacob, V. D., & Pakshirajan, K. (2020). Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomolecular Concepts, 11, 32–56. https://doi.org/10.1515/bmc-2020-0004
  • Mazzarella, L., Merlino, A., Balasco, N., Balsamo, A., & Vergara, A. (2018). Crystal structure of the ferric homotetrameric β4 human hemoglobin. Biophysical Chemistry, 240, 9–14. https://doi.org/10.1016/j.bpc.2018.05.003
  • Nedić, O., Rattan, S., Grune, T., & Trougakos, I. (2013). Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radical Research, 47(sup1), 28–38. https://doi.org/10.3109/10715762.2013.806798
  • Nerimetla, R., Krishnan, S., Mazumder, S., Mohanty, S., Mafi, G. G., VanOverbeke, D. L., & Ramanathan, R. (2017). Species-specificity in myoglobin oxygenation and reduction potential properties. Meat and Muscle Biology, 1(1), 1–7. https://doi.org/10.22175/mmb2016.10.0003
  • Novak, Z., Kovacs, J., Waart, F. V., Fisher, T., Johnson, C., & Meiselman, H. (1998). Superoxide production and deformability of erythrocytes in sickle cell disease 789. Pediatric Research, 43, 137–137. https://doi.org/10.1203/00006450-199804001-00810
  • Ogo, S., Focesi, A., Jr., Cashon, R., Bonaventura, J., & Bonaventura, C. (1989). Interactions of nicotinamide adenine dinucleotides with varied states and forms of hemoglobin. Journal of Biological Chemistry, 264(19), 11302–11306. https://doi.org/10.1016/S0021-9258(18)60464-8
  • Pandey, K. B., & Rizvi, S. I. (2011). Biomarkers of oxidative stress in red blood cells. Biomedical Papers, 155(2), 131–136. https://doi.org/10.5507/bp.2011.027
  • Parashar, A., & Manoj, K. M. (2021). Murburn precepts for cytochrome P450 mediated drug/xenobiotic metabolism and homeostasis. Current Drug Metabolism, 22. https://doi.org/10.2174/1389200222666210118102230
  • Peng, W., Liu, X., Zhang, W., & Li, G. (2003). An electrochemical investigation of effect of ATP on hemoglobin. Biophysical Chemistry, 106, 267–273. https://doi.org/10.1016/S0301-4622(03)00212-6
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. https://doi.org/10.1002/jcc.20084
  • Ramdani, G., & Langsley, G. (2014). ATP, an extracellular signaling molecule in red blood cells: A messenger for malaria? Biomedical Journal, 37, 284–292. https://doi.org/10.4103/2319-4170.132910
  • Scarpa, M., Rigo, A., Orsega, E. F., & Viglino, P. (2011). Generation of the Superoxide radical in the red blood cell [Paper presentation]. Paper Presented at: Oxygen Radicals in Chemistry and Biology: Proceedings, 3 International Conference, Neuherberg, Federal Republic of Germany, July 10–15, 1983. (Walter de Gruyter).
  • Schacter, L. (1986). Generation of superoxide anion and hydrogen peroxide by erythrocytes from individuals with sickle trait or normal haemoglobin. European Journal of Clinical Investigation, 16, 204–210. https://doi.org/10.1111/j.1365-2362.1986.tb01330.x
  • Sen, U., Dasgupta, J., Choudhury, D., Datta, P., Chakrabarti, A., Chakrabarty, S. B., Chakrabarty, A., & Dattagupta, J. K. (2004). Crystal structures of HbA2 and HbE and modeling of hemoglobin δ4: Interpretation of the thermal stability and the antisickling effect of HbA2 and identification of the ferrocyanide binding site in Hb. Biochemistry, 43, 12477–12488. https://doi.org/10.1021/bi048903i
  • Song, J., Yoon, D., Christensen, R. D., Horvathova, M., Thiagarajan, P., & Prchal, J. T. (2015). HIF-mediated increased ROS from reduced mitophagy and decreased catalase causes neocytolysis. Journal of Molecular Medicine, 93, 857–866. https://doi.org/10.1007/s00109-015-1294-y
  • Sprague, R. S., Goldman, D., Bowles, E. A., Achilleus, D., Stephenson, A. H., Ellis, C. G., & Ellsworth, M. L. (2010). Divergent effects of low-O2 tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: Implications for O2 supply to skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H566–H573. https://doi.org/10.1152/ajpheart.00430.2010
  • Sprague, R. S., Hanson, M. S., Achilleus, D., Bowles, E. A., Stephenson, A. H., Sridharan, M., Adderley, S., Procknow, J., & Ellsworth, M. L. (2009). Rabbit erythrocytes release ATP and dilate skeletal muscle arterioles in the presence of reduced oxygen tension. Pharmacological Reports, 61(1), 183–190. https://doi.org/10.1016/S1734-1140(09)70020-9
  • Sridharan, M., Adderley, S. P., Bowles, E. A., Egan, T. M., Stephenson, A. H., Ellsworth, M. L., & Sprague, R. S. (2010). Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. American Journal of Physiology-Heart and Circulatory Physiology, 299, H1146–H1152. https://doi.org/10.1152/ajpheart.00301.2010
  • Strader, M. B., Hicks, W. A., Kassa, T., Singleton, E., Soman, J., Olson, J. S., Weiss, M. J., Mollan, T. L., Wilson, M. T., & Alayash, A. I. (2014). Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: A novel subunit-specific mechanism in hemoglobin. Journal of Biological Chemistry, 289, 22342–22357. https://doi.org/10.1074/jbc.M114.568980
  • Turpin, C., Catan, A., Guerin-Dubourg, A., Debussche, X., Bravo, S. B., Álvarez, E., Van Den Elsen, J., Meilhac, O., Rondeau, P., & Bourdon, E. (2020). Enhanced oxidative stress and damage in glycated erythrocytes. PloS One, 15, e0235335. https://doi.org/10.1371/journal.pone.0235335
  • Venkatachalam, A., Parashar, A., & Manoj, K. M. (2016). Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme ‘active site’ pocket plays a relatively ‘passive role’ in some enzyme-substrate interactions. In Silico Pharmacology, 4(1), 2. https://doi.org/10.1186/s40203-016-0016-7
  • Vetrano, A. M., Heck, D. E., Mariano, T. M., Mishin, V., Laskin, D. L., & Laskin, J. D. (2005). Characterization of the Oxidase Activity in Mammalian Catalase. Journal of Biological Chemistry, 280(42), 35372–35381. https://doi.org/10.1074/jbc.M503991200
  • Wilbur, S., Williams, M., Williams, R., Scinicariello, F., Klotzbach, J., Diamond, G., & Citra, M. (2012). Toxicological profile for carbon monoxide. Agency for Toxic Substances and Disease Registry (US).
  • Winterbourn, C. C. (1990). Oxidative reactions of hemoglobin. Methods in Enzymology, 186, 265–272.
  • Xu, Z., Dou, W., Wang, C., & Sun, Y. (2019). Stiffness and ATP recovery of stored red blood cells in serum. Microsystems & Nanoengineering, 5(1), 51. https://doi.org/10.1038/s41378-019-0097-7
  • Yoshida, S., & Iizuka, T. (1976). Effects of organic and inorganic phosphate ions on the charge-transfer band of ferric myoglobin. Biochimica et Biophysica Acta, 434, 505–508. https://doi.org/10.1016/0005-2795(76)90241-5
  • Yu, J., Zhou, Y., Tanaka, I., & Yao, M. (2010). Roll: A new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 26, 46–52. https://doi.org/10.1093/bioinformatics/btp599
  • Yubisui, T., Takeshita, M., & Yoneyama, Y. (1980). Reduction of methemoglobin through flavin at the physiological concentration by NADPH-flavin reductase of human erythrocytes. The Journal of Biochemistry, 87, 1715–1720. https://doi.org/10.1093/oxfordjournals.jbchem.a132915
  • Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., & Metz, T. O. (2009). A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. Journal of Proteome Research, 8, 754–769. https://doi.org/10.1021/pr800858h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.