282
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Adsorption behavior of mercaptopurine and 6-thioguanine drugs on the B12N12, AlB11N12 and GaB11N12 nanoclusters, a comparative DFT study

&
Pages 9464-9483 | Received 21 Jan 2021, Accepted 10 May 2021, Published online: 12 Aug 2021

References

  • Abdel-Latif, M. K., Abd El-Mageed, H. R., Mohamed, H. S., & Mustafa, F. M. (2020). Study the solvation effect on 6-phenyl-2-thioxo-1, 2-dihydropyridine-3-carbonitrile derivatives by TD-DFT calculations and molecular dynamics simulations. Journal of Molecular Structure, 1200, 127056. https://doi.org/10.1016/j.molstruc.2019.127056
  • Abdolahi, N. (2018). Adsorption of celecoxib on B12N12 fullerene: Spectroscopic and DFT/TD-DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 348–353. https://doi.org/10.1016/j.saa.2018.06.077
  • Abdolahi, N., Singla, P., Soltani, A., Javan, M., Aghaei, M., Heidari, F., & Sedighi, S. (2020). Gold decorated B12N12 nanocluster as an effective sulfasalazine drug carrier: A theoretical investigation. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114296. https://doi.org/10.1016/j.physe.2020.114296
  • Ahmadi Peyghan, A., Hadipour, N., & Bagheri, Z. (2013). Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC 2 N nanotube: Density functional theory studies. The Journal of Physical Chemistry C, 117(5), 2427–2432. https://doi.org/10.1021/jp312503h
  • Aihara, J. I. (1999). Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A, 103(37), 7487–7495. https://doi.org/10.1021/jp990092i
  • Baei, M. T., Bagheri, Z., & Peyghan, A. A. (2013). Transition metal atom adsorptions on a boron nitride nanocage. Structural Chemistry, 24(4), 1039–1044. https://doi.org/10.1007/s11224-012-0132-x
  • Baei, M. T., Kanani, Y., Rezaei, V. J., & Soltani, A. (2014). Adsorption phenomena of gas molecules upon Ga-doped BN nanotubes: A DFT study. Applied Surface Science, 295, 18–25. https://doi.org/10.1016/j.apsusc.2013.12.136
  • Beheshtian, J., Baei, M. T., & Peyghan, A. A. (2012). Theoretical study of CO adsorption on the surface of BN, AlN, BP and AlP nanotubes. Surface Science, 606(11-12), 981–985. https://doi.org/10.1016/j.susc.2012.02.019
  • Bertino, J. R., Waud, W. R., & Parker, W. B. (2011). Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: Current strategies. Cancer Biology & Therapy, 11, 627–632. https://doi.org/10.4161/cbt.11.7.14948
  • Bezi Javan, M., Soltani, A., Ghasemi, A. S., Tazikeh Lemeski, E., Gholami, N., & Balakheyli, H. (2017). Ga-doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards Soman and Chlorosoman. Applied Surface Science, 411, 1–10. https://doi.org/10.1016/j.apsusc.2017.03.187
  • Bezi Javan, M., Soltani, A., Tazikeh Lemeski, E., Ahmadi, A., & Moazen Rad, S. (2016). Interaction of B12N12 nano-cage with cysteine through various functionalities: A DFT study. Superlattices and Microstructures, 100, 24–37. https://doi.org/10.1016/j.spmi.2016.08.035
  • Burchenal, J. H., Murphy, M. L., Ellison, R. R., Sykes, M. P., Tan, T. C., Leone, L. A., Karnof-Sky, D. A., Craver, L. F., Dargeon, H. W., & Rhoads, C. P. (1953). Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of acute leukemia and allied diseases. Blood, 8(11), 965–999. https://doi.org/10.1182/blood.V8.11.965.965
  • Chai, J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615–6620. https://doi.org/10.1039/b810189b
  • Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., & Bertozzi, C. R. (2009). Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 131(3), 890–891. https://doi.org/10.1021/ja807334b
  • El-Mageed, H. A., &Ibrahim, M. A. (2021). Elucidating the adsorption and detection of amphetamine drug by pure and doped Al12N12, and Al12P12nano-cages, a DFT study. Journal of Molecular Liquids, 326, 115297. https://doi.org/10.1016/j.molliq.2021.115297
  • El-Mageed, H. A., Mustafa, F. M., & Abdel-Latif, M. K. (2020). Boron nitride nanoclusters, nanoparticles and nanotubes as a drug carrier for isoniazid anti-tuberculosis drug, computational chemistry approaches. Journal of Biomolecular Structure and Dynamics, 1–10.
  • Eslami, M., Vahabi, V., & Peyghan, A. A. (2016). Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 76, 6–11. https://doi.org/10.1016/j.physe.2015.09.043
  • Esrafili, M. D., & Nurazar, R. (2014). A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol. Applied Surface Science, 314, 90–96. https://doi.org/10.1016/j.apsusc.2014.06.148
  • Farmanzadeh, D., & Keyhanian, M. (2019). Computational assessment on the interaction of amantadine drug with B12N12 and Zn12O12 nanocages and improvement in adsorption behaviors by impurity Al doping. Theoretical Chemistry Accounts, 138, 11. https://doi.org/10.1007/s00214-018-2400-3
  • Farzad, F., & Hashemzadeh, H. (2020). Probing the effect of polyethene glycol on the adsorption mechanisms of Gem on the hexagonal boron nitride as a highly efficient polymerbased drug delivery system: DFT, classical MD and well-tempered metadynamics simulations. Journal of Molecular Graphics and Modelling, 98, 107613. https://doi.org/10.1016/j.jmgm.2020.107613
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X. ,Caricato, M., Marenich, A., Bloino, J. ,Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2003). Gaussian 09, Revision A.1. Gaussian Inc.
  • Ganji, M. D., Yazdani, H., & Mirnejad, A. (2010). B36N36 fullerene-like nanocages: A novel material for drug delivery. Physica E: Low-Dimensional Systems and Nanostructures, 42(9), 2184–2189. https://doi.org/10.1016/j.physe.2010.04.018
  • Golberg, D., Bando, Y., Stéphan, O., & Kurashima, K. (1998). Octahedral boron nitride fullerenes formed by electron beam irradiation. Applied Physics Letters, 73(17), 2441–2443. https://doi.org/10.1063/1.122475
  • Goldberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., Tamiya, K., & Yusa, H. (1997). Boron nitride nanotube growth defects and their annealing-out under electron irradiation. Chemical Physics Letters, 279(3-4), 191–196. https://doi.org/10.1016/S0009-2614(97)00962-7
  • Golipour-Chobar, E., Salimi, F., & Ebrahimzadeh Rajaei, G. (2020). Boron nitride nanocluster as a carrier for lomustine anticancer drug delivery: DFT and thermodynamics studies. Monatshefte Für Chemie - Chemical Monthly, 151(3), 309–318. https://doi.org/10.1007/s00706-020-02564-y
  • Hasanzade, Z., & Raissi, H. (2017). Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug thioguanine on graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics. Applied Surface Science, 422, 1030–1041. https://doi.org/10.1016/j.apsusc.2017.05.245
  • Hashemzadeh, H., & Raissi, H. (2019). Loading and release of anticancer drug from phosphorene as a template material with high efficient carrier: From vacuum to cell membrane. Journal of Molecular Liquids, 291, 111346. https://doi.org/10.1016/j.molliq.2019.111346
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864–BB71. https://doi.org/10.1103/PhysRev.136.B864
  • Hoseininezhad-Namin, M. S., Pargolghasemi, P., Alimohammadi, S., Rad, A. S., & Taqavi, L. (2017). Quantum Chemical Study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs. Physica E: Low-Dimensional Systems and Nanostructures, 90, 204–213. https://doi.org/10.1016/j.physe.2017.04.002
  • Hossain, M. R., Hasan, M. M., Nishat, M., Noor-E-Ashrafi, Ahmed, F., Ferdous, T., & Hossain, M. A. (2021). DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. Journal of Molecular Liquids, 323, 114627. https://doi.org/10.1016/j.molliq.2020.114627
  • Keith, T. A. (2019). AIMAll (Version 19.02.13). TK Gristmill Software. aim.tkgristmill.com.
  • Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Hofmann, M., Nezich, D., RodriguezNieva, J. F., Dresselhaus, M., Palacios, T., & Kong, J. (2012). Synthesis of monolayer hexagonal. Boron nitride on Cu foil using chemical vapor deposition. Nano Letters, 12, 161–166. https://doi.org/10.1021/nl203249a
  • Kraszewski, S., Duverger, E., Ramseyer, C., & Picaud, F. (2013). Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures. Journal of Chemical Physics, 139(17), 1–14.
  • Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., & Meyyappan, M. (2003). Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 3(7), 929–933. https://doi.org/10.1021/nl034220x
  • Matxain, J. M., Eriksson, L. A., Mercero, J. M., Lopez, X., Piris, M., Ugalde, J. M., Poater, J., Matito, E., & Solà, M. (2007). New solids based on B12N12 fullerenes. The Journal of Physical Chemistry C, 111(36), 13354–13360. https://doi.org/10.1021/jp073773j
  • Mirkamali, E. S., & Ahmadi, R. (2020). Adsorption of melphalan anticancer drug on the surface of boron nitride cage (B12N12): A comprehensive DFT study. Journal of Medicinal and Chemical Sciences, 3(3), 199–207.
  • Munshi, P. N., Lubin, M., & Bertino, J. R. (2014). 6-thioguanine: A drug with unrealized potential for cancer therapy. Oncologist, 19(7), 760–765. https://doi.org/10.1634/theoncologist.2014-0178
  • Noormohammadbeigi, M., Kamalinahad, S., Izadi, F., Adimi, M., & Ghasemkhani, A. (2020). Theoretical investigation of thioguanine isomers anticancer drug adsorption treatment on B12N12 nanocage. Materials Research Express, 6(12), 1250g2. https://doi.org/10.1088/2053-1591/ab672a
  • Oku, T., Narita, I., & Nishiwaki, A. (2004). Synthesis, atomic structures, and electronic states of boron nitride nanocage clusters and nanotubes. Materials and Manufacturing Processes, 19(6), 1215–1239. https://doi.org/10.1081/AMP-200035336
  • Padash, A., Esfahani, M. R., & Rad, A. S. (2020). The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerenelikenanocages: Detailed DFT and QTAIM investigations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1792991
  • Padash, R., Sobhani Nasab, A., Rahimi Nasrabadi, M., Mirmotahari, M., Ehrlich, H., Rad, A. S., & Peyravi, M. (2018). Is it possible to use X12Y12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug. Applied Physics A, 124(9), 582. https://doi.org/10.1007/s00339-018-1965-y
  • Paine, R. T., & Narula, C. K. (1990). Synthetic routes to boron nitride. Chemical Reviews, 90(1), 73–91. https://doi.org/10.1021/cr00099a004
  • Paek, H.-J., Lee, Y.-J., Chung, H.-E., Yoo, N.-H., Lee, J.-A., Kim, M.-K., Lee, J. K., Jeong, J., & Choi, S.-J. (2013). Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale, 5(23), 11416–11427. https://doi.org/10.1039/c3nr02140h
  • Rad, A. S., & Ayub, K. (2016). A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. Journal of Alloys and Compounds, 672, 161–169.
  • Responsive photonic nanostructures: Smart nanoscale optical materials. n.d. Google Books. https://books.google.com.bd/books?hl=en&lr=&id=CmX2L_rJ4JoC&oi=fnd&pg=PA292&dq=D.+Golberg,+Y.+Bando,+Y.+Huang,+T.+Terao,+M.+Mitome,+C.+Tang,+C
  • Saikia, N., & Deka, R. C. (2013). Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide. Journal of Computer-Aided Molecular Design, 27(9), 807–821. https://doi.org/10.1007/s10822-013-9681-3
  • Seifert, G., Fowler, P. W., Mitchell, D., Porezag, D., & Frauenheim, T. (1997). Boron-nitrogen analogues of the fullerenes: Electronic and structural properties. Chemical Physics Letters, 268(5-6), 352–358. https://doi.org/10.1016/S0009-2614(97)00214-5
  • Shakerzadeh, E., Khodayar, E., & Noorizadeh, S. (2016). Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Computational Materials Science, 118, 155–171. https://doi.org/10.1016/j.commatsci.2016.03.016
  • Sierpe, R., Noyong, M., Simon, U., Aguayoe, D., Huerta, J., Kogan, M. J., & Yutronic, N. (2017). Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles. Carbohydrate Polymers, 177, 22–31. https://doi.org/10.1016/j.carbpol.2017.08.102
  • Singla, P., Riyaz, M., Singhal, S., & Goel, N. (2016). Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction. Physical Chemistry Chemical Physics, 18(7), 5597–5604. https://doi.org/10.1039/C5CP07078C
  • Soltani, A., Baei, M. T., Tazikeh Lemeski, E., & Shahini, M. (2014). Sensitivity of BN nano-cages to caffeine andnicotine molecules. Superlattices and Microstructures, 76, 315–325. https://doi.org/10.1016/j.spmi.2014.09.031
  • Soltani, A., & Javan, M. B. (2015). Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: A theoretical study. RSC Advances, 5(110), 90621–90631. https://doi.org/10.1039/C5RA12571E
  • Soltani, A., Taghartapeh, M. R., Erfani-Moghadam, V., Javan, M. B., Heidari, F., Aghaei, M., & Mahon, P. J. (2018). Serine adsorption through different functionalities on the B12N12 and PtB12N12 nanocages. Materials Science and Engineering: C, 92, 216–227. https://doi.org/10.1016/j.msec.2018.06.048
  • Vatanparast, M., & Shariatinia, Z. (2019). Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: Insights from DFT calculations and molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 89, 50–59. https://doi.org/10.1016/j.jmgm.2019.02.012
  • Vessally, E., Esrafili, M. D., Nurazar, R., Nematollahi, P., & Bekhradnia, A. (2017). A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Structural Chemistry, 28(3), 735–748. https://doi.org/10.1007/s11224-016-0858-y
  • Wang, Q., Sun, Q., Jena, P., & Kawazoe, Y. (2009). Potential of AlN nanostructures as hydrogen storage materials. ACS Nano, 3(3), 621–626. https://doi.org/10.1021/nn800815e
  • Wu, H. S., Zhang, F. Q., Xu, X. H., Zhang, C. J., & Jiao, H. (2003). Geometric and energetic aspects of aluminum nitride cages. The Journal of Physical Chemistry A, 107(1), 204–209. https://doi.org/10.1021/jp027300i
  • Zhu, H. Y., Schmalz, T. G., & Klein, D. J. (1997). Alternant boron nitride cages: A theoretical study. International Journal of Quantum Chemistry, 63(2), 393–401. https://doi.org/10.1002/(SICI)1097-461X(1997)63:2<393::AID-QUA10>3.0.CO;2-A
  • Zhu, H., Zhao, C., Cai, Q., Fu, X., & Sheykhahmad, F. R. (2020). Adsorption behavior of 5-aminosalicylic acid drug on the B12N12, AlB11N12 and GaB11N12 nanoclusters: A comparative DFT study. Inorganic Chemistry Communications, 114, 107808. https://doi.org/10.1016/j.inoche.2020.107808

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.