1,346
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Chemical system biology approach to identify multi-targeting FDA inhibitors for treating COVID-19 and associated health complications

, ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 9543-9567 | Received 16 Dec 2020, Accepted 10 May 2021, Published online: 01 Jun 2021

References

  • Adem, S., Eyupoglu, V., Sarfraz, I., Rasul, A., & Ali, M. (2020). Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA. Preprints, 2020, 2020030333. https://doi.org/10.20944/preprints202003.0333.v1.
  • Aishwarya, S., Gunasekaran, K., Sagaya Jansi, R., & Sangeetha, G. (2021). From genomes to molecular dynamics- A bottom up approach in extrication of SARS CoV-2 main protease inhibitors. Computational Toxicology (Amsterdam, Netherlands), 18, 100156. https://doi.org/10.1016/j.comtox.2021.100156
  • Akriti, K., Satpathy, I., & Patnaik, B. (2021). Covid-19 and its impact on livelihood: An Indian perspective. Eurasian Chemical Communications, 3(2), 81–87.
  • Altayeb, H., Bouslama, L., Abdulhakimc, J. A., Chaieb, K., Baothman, O. A., & Zamzami, M. A. (2020). Potential activity of a selected natural compounds on SARS-CoV-2 RNA-dependent-RNA polymerase, and binding affinity of the receptor-binding domain (RBD).
  • Awuni, Y., & Mu, Y. (2015). Reduction of false positives in structure-based virtual screening when receptor plasticity is considered. Molecules, 20(3), 5152–5164. https://doi.org/10.3390/molecules20035152
  • Aziz, N., Kim, M. Y., & Cho, J. Y. (2018). Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. Journal of Ethnopharmacology, 225, 342–358. https://doi.org/10.1016/j.jep.2018.05.019
  • Bacopoulou, F., Skouroliakou, M., & Markantonis, S. L. (2009). Netilmicin in the neonate: Pharmacokinetic analysis and influence of parenteral nutrition. Pharmacy World & Science, 31(3), 365–368. https://doi.org/10.1007/s11096-009-9278-z
  • Baliga, M. S., Saxena, A., Kaur, K., Kalekhan, F., Chacko, A., Venkatesh, P., & Fayad, R. (2014). Chapter 50 - Polyphenols in the prevention of ulcerative colitis: Past, present and future. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols in human health and disease (pp. 655–663).Academic Press.
  • Barreca, D., Mandalari, G., Calderaro, A., Smeriglio, A., Trombetta, D., Felice, M. R., & Gattuso, G. (2020). Citrus flavones: An update on sources, biological functions, and health promoting properties. Plants, 9(3), 288. https://doi.org/10.3390/plants9030288
  • Beganovic, M., Luther, M. K., Rice, L. B., Arias, C. A., Rybak, M. J., & LaPlante, K. L. (2018). A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clinical Infectious Diseases, 67(2), 303–309. https://doi.org/10.1093/cid/ciy064
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(suppl_2), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhowmik, D., Nandi, R., Jagadeesan, R., Kumar, N., Prakash, A., & Kumar, D. (2020). Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infection, Genetics and Evolution, 84, 104451. https://doi.org/10.1016/j.meegid.2020.104451
  • Bosch-Barrera, J., Martin-Castillo, B., Buxó, M., Brunet, J., Encinar, J. A., & Menendez, J. A. (2020). Silibinin and SARS-CoV-2: Dual targeting of host cytokine storm and virus replication machinery for clinical management of COVID-19 patients. Journal of Clinical Medicine, 9(6), 1770. https://doi.org/10.3390/jcm9061770
  • Cardoso, J. M. S., Fonseca, L., Egas, C., & Abrantes, I. (2018). Cysteine proteases secreted by the pinewood nematode, Bursaphelenchus xylophilus: In silico analysis. Computational Biology and Chemistry, 77, 291–296. https://doi.org/10.1016/j.compbiolchem.2018.10.011
  • Case, D. A., Darden, T. A., Cheatham, T. E. III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A. W., Kolossváry, I., Wong, K. F., Paesani, F., … Kollman, P. A . (2010). AMBER 12. University of California, San Francisco.
  • Chandra, A., Gurjar, V., Qamar, I., & Singh, N. (2020). Identification of potential inhibitors of SARS-COV-2 endoribonuclease (EndoU) from FDA approved drugs: A drug repurposing approach to find therapeutics for COVID-19. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1775127
  • Chen, C., Chen, Y., Wu, P., & Chen, B. (2014). Update on new medicinal applications of gentamicin: Evidence-based review. Journal of the Formosan Medical Association, 113(2), 72–82. https://doi.org/10.1016/j.jfma.2013.10.002
  • Chen, Y. W., Yiu, C.-P B., & Wong, K.-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. 10.12688/f1000research.22457.1
  • Cheng, J. J. B. s b. (2008). A multi-template combination algorithm for protein comparative modeling. BMC Structural Biology, 8(1), 18. https://doi.org/10.1186/1472-6807-8-18
  • Cheng, L., Zheng, W., Li, M., Huang, J., Bao, S., Xu, Q., & Ma, Z. (2020). Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints, 2020, 2020020313.
  • Chiasson, J. L., Josse, R. G., Gomis, R., Hanefeld, M., Karasik, A., & Laakso, M. (2002). Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. The Lancet, 359(9323), 2072–2077. https://doi.org/10.1016/S0140-6736(02)08905-5
  • Choudhury, A., Chakraborty, I., Banerjee, T. S., Vana, D. R., & Adapa, D. (2017). Efficacy of morin as a potential therapeutic phytocomponent: Insights into the mechanism of action. International Journal of Medical Research & Health Sciences, 6(11), 175–194.
  • Coban, M. (2020). Attacking COVID-19 progression using multi-drug therapy for synergetic target engagement. arXiv Preprint arXiv:2007.02557.
  • Contini, A. (2020). Virtual screening of an FDA approved drugs database on two COVID-19 coronavirus proteins. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11847381.v1
  • Contou, D., Claudinon, A., Pajot, O., Micaëlo, M., Longuet Flandre, P., Dubert, M., Cally, R., Logre, E., Fraissé, M., Mentec, H., & Plantefève, G. (2020). Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of Intensive Care, 10(1), 1–9. https://doi.org/10.1186/s13613-020-00736-x
  • Craig, W. A., Gudmundsson, S., & Reich, R. M. (1983). Netilmicin sulfate: A comparative evaluation of antimicrobial activity, pharmacokinetics, adverse reactions and clinical efficacy. Pharmacotherapy, 3(6), 305–315. https://doi.org/10.1002/j.1875-9114.1983.tb03283.x
  • da Silva Antonio, A., Wiedemann, L. S. M., & Veiga-Junior, V. F. (2020). Natural products' role against COVID-19. RSC Advances, 10(39), 23379–23393. https://doi.org/10.1039/D0RA03774E
  • Das, S., & Singha Roy, A. (2020). Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: A molecular docking study. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12245270.v1
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 39, 1–18.
  • Di Gennaro, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. International Journal of Environmental Research and Public Health, 17(8), 2690. https://doi.org/10.3390/ijerph17082690
  • Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Kotfis, K., Ghavami, S., & Łos, M. J. (2020). FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resistance Updates, 53, 100719. https://doi.org/10.1016/j.drup.2020.100719
  • Elfiky, A. A. (2020). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 39, 1–9.
  • Fan, W., Qian, S., Qian, P., & Li, X. (2016). Antiviral activity of luteolin against Japanese encephalitis virus. Virus Research, 220, 112–116. https://doi.org/10.1016/j.virusres.2016.04.021
  • Fawcett, T. J. P. r l. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Felsenstein, S., Herbert, J. A., McNamara, P. S., & Hedrich, C. M. (2020). COVID-19: Immunology and treatment options. Clinical Immunology, 215, 108448. https://doi.org/10.1016/j.clim.2020.108448
  • Fox, E. J. (2004). Mechanism of action of mitoxantrone. Neurology, 63(12 Suppl 6), S15–S18. https://doi.org/10.1212/wnl.63.12_suppl_6.s15
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025
  • Gharagozloo, M., Jafari, S., Esmaeil, N., Javid, E. N., Bagherpour, B., & Rezaei, A. (2013). Immunosuppressive effect of silymarin on mitogen‐activated protein kinase signalling pathway: The impact on T cell proliferation and cytokine production. Basic & Clinical Pharmacology & Toxicology, 113(3), 209–214. https://doi.org/10.1111/bcpt.12088
  • Ghosh, K., Amin, S. A., Gayen, S., & Jha, T. (2020). Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. Journal of Molecular Structure, 1224, 129026. https://doi.org/10.1016/j.molstruc.2020.129026
  • Gur, D., Glinert, I., Aftalion, M., Vagima, Y., Levy, Y., Rotem, S., Zauberman, A., Tidhar, A., Tal, A., Maoz, S., Ber, R., Pass, A., & Mamroud, E. (2018). Inhalational gentamicin treatment is effective against pneumonic plague in a mouse model. Frontiers in Microbiology, 9, 741. https://doi.org/10.3389/fmicb.2018.00741
  • Harismah, K., & Mirzaei, M. (2020). Favipiravir: Structural analysis and activity against COVID-19. Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 2(2), 55–60.
  • Hirata, F. (2003). Molecular theory of solvation (Vol. 24). Springer Science & Business Media. http://biosig.unimelb.edu.au/pkcsm/.).
  • Huang, C.-T., Hung, C.-Y., Hseih, Y.-C., Chang, C.-S., Velu, A. B., He, Y.-C., Huang, Y.-L., Chen, T.-A., Chen, T.-C., Lin, C.-Y., Lin, Y.-C., Shih, S.-R., & Dutta, A. (2019). Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 64, 152904. https://doi.org/10.1016/j.phymed.2019.152904
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hussain, M. T., Verma, A. R., Vijayakumar, M., Sharma, A., Mathela, C., & Rao, C. V. (2009). Rutin, a natural flavonoid, protects against gastric mucosal damage in experimental animals. 亚洲传统医药, 4(5), 188–197.
  • Huynh, T., Wang, H., Cornell, W., & Luan, B. (2020). In silico exploration of repurposing and optimizing traditional Chinese medicine rutin for possibly inhibiting SARS-CoV-2's main protease. chemrxiv.org
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., Hussien, T. A., Badr, E. A. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M.-E F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020.104046
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., Imran, A., Orhan, I. E., Rizwan, M., Atif, M., Gondal, T. A., & Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy, 112, 108612. https://doi.org/10.1016/j.biopha.2019.108612
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jannat, K., Hasan, A., Mahamud, R., Jahan, R., Bondhon, T. A., & Farzana, B-n. (2020). In silico screening of Vigna radiata and Vigna mungo phytochemicals for their binding affinity to SARS-CoV-2 (COVID-19) main protease (3CLpro). Journal of Medicinal Plants, 8(4), 89–95.
  • Jia, S., Hu, Y., Zhang, W., Zhao, X., Chen, Y., Sun, C., Li, X., & Chen, K. (2015). Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice. Food & Function, 6(3), 878–886. https://doi.org/10.1039/c4fo00993b
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., … Yang, H. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 582(7811), 289–293.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kadioglu, O., Saeed, M., Johannes Greten, H., & Efferth, T. (2021). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers in biology and medicine, 133, 104359.
  • Kaithwas, G., & Majumdar, D. K. (2010). Evaluation of antiulcer and antisecretory potential of Linum usitatissimum fixed oil and possible mechanism of action. Inflammopharmacology, 18(3), 137–145. https://doi.org/10.1007/s10787-010-0037-5
  • Kang, J. S., Jeon, Y. J., Park, S.-K., Yang, K.-H., & Kim, H. M. (2004). Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1β and prostaglandin E2 synthesis by silymarin. Biochemical Pharmacology, 67(1), 175–181. https://doi.org/10.1016/j.bcp.2003.08.032
  • Karimi, G., Vahabzadeh, M., Lari, P., Rashedinia, M., & Moshiri, M. (2011). “Silymarin”, a promising pharmacological agent for treatment of diseases. Iranian Journal of Basic Medical Sciences, 14(4), 308.
  • Kaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139. https://doi.org/10.1021/ct400340s
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. 1–14. preprints.org
  • Khalid, H., Hussain, R., & Hafeez, A. (2020). Virtual screening of Piperidine based small molecules against COVID-19. Lab-in-Silico, 1(2), 50–55.
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 39(8), 2679–2614. https://doi.org/10.1080/071102.2020.1753577
  • Kheirandish, H. (2021). Corona Virus and Salt Intake. Journal of Medicinal and Chemical Sciences, 4(1), 1–7.
  • Kim, H., Kong, H., Choi, B., Yang, Y., Kim, Y., Lim, M. J., Neckers, L., & Jung, Y. (2005). Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharmaceutical Research, 22(9), 1499–1509. https://doi.org/10.1007/s11095-005-6250-z
  • Kirst, H. A., & Allen, N. E. (2007). 7.21 - Aminoglycosides antibiotics. In J. B. Taylor & D. J. Triggle (Eds.), Comprehensive medicinal chemistry II (pp. 629–652). Elsevier.
  • Kolate, A., Kore, G., Lesimple, P., Baradia, D., Patil, S., Hanrahan, J. W., & Misra, A. (2015). Polymer assisted entrapment of netilmicin in PLGA nanoparticles for sustained antibacterial activity. Journal of Microencapsulation, 32(1), 61–74. https://doi.org/10.3109/02652048.2014.944951
  • Kondo, J., François, B., Russell, R. J., Murray, J. B., & Westhof, E. (2006). Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the γ-amino-α-hydroxybutyryl (haba) group. Biochimie, 88(8), 1027–1031. https://doi.org/10.1016/j.biochi.2006.05.017
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Wyles, M. D. (2020). Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827. https://doi.org/10.1016/j.cell.2020.06.043
  • Korber, B., Fischer, W., Gnanakaran, S., Yoon, H., Theiler, J., & Abfalterer, W., & Partridge, D. G. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2, BioRxiv.
  • Kreft, S., Knapp, M., & Kreft, I. (1999). Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry, 47(11), 4649–4652. https://doi.org/10.1021/jf990186p
  • Kumar, S., Priya Matharasi, D., Gopi, S., Sivakumar, S., & Narasimhan, S. (2010). Synthesis of cytotoxic and antioxidant Schiff's base analogs of aloin. Journal of Asian Natural Products Research, 12(5), 360–370. https://doi.org/10.1080/10286021003775327
  • Kurisawa, M., Chung, J. E., Uyama, H., & Kobayashi, S. (2003). Enzymatic synthesis and antioxidant properties of poly (rutin). Biomacromolecules, 4(5), 1394–1399. https://doi.org/10.1021/bm034136b
  • Lam, S., Lombardi, A., & Ouanounou, A. (2020). COVID-19: A review of the proposed pharmacological treatments. European Journal of Pharmacology, 886, 173451. https://doi.org/10.1016/j.ejphar.2020.173451
  • Li, G. G., Bian, G. X., Ren, J. P., Wen, L. Q., Zhang, M., & Lü, Q. J. (2007). Protective effect of madecassoside against reperfusion injury after regional ischemia in rabbit heart in vivo. Yao xue xue bao = Acta Pharmaceutica Sinica, 42(5), 475–480
  • Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, Inflammation and Immunity. Nutrients, 8(3), 167. https://doi.org/10.3390/nu8030167
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, C.-H., Jassey, A., Hsu, H.-Y., & Lin, L.-T. (2019). Antiviral activities of silymarin and derivatives. Molecules, 24(8), 1552. https://doi.org/10.3390/molecules24081552
  • Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini-Reviews in Medicinal Chemistry, 9(1), 31–59. https://doi.org/10.2174/138955709787001712
  • López-Revuelta, A., Sánchez-Gallego, J. I., Hernández-Hernández, A., Sánchez-Yagüe, J., & Llanillo, M. (2006). Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chemico-Biological Interactions, 161(1), 79–91. https://doi.org/10.1016/j.cbi.2006.03.004
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Ma, L., Tang, L., & Yi, Q. (2019). Salvianolic acids: Potential source of natural drugs for the treatment of fibrosis disease and cancer. Frontiers in Pharmacology, 10, 97. https://doi.org/10.3389/fphar.2019.00097
  • Mahmoud, A. M., & Hussein, O. (2016). Hesperidin as a promising anti-diabetic flavonoid: The underlying molecular mechanism. International Journal of Food and Nutritional Science, 3, 1–2.
  • Mandal, C. C., & Panwar, M. (2020). Can the summer temperature drop COVID-19 cases? Public Health, 185, 72–79. 10.1016/j.puhe.2020.05.065
  • Mehla, R., Bivalkar-Mehla, S., & Chauhan, A. (2011). A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One, 6(11), e27915. https://doi.org/10.1371/journal.pone.0027915
  • Milić, N., Milošević, N., Suvajdžić, L., Žarkov, M., & Abenavoli, L. (2013). New therapeutic potentials of milk thistle (Silybum marianum). Natural Product Communications, 8(12), 193451300801236. https://doi.org/10.1177/1934578X1300801236
  • Mirzaei, M., Harismah, K., Da'i, M., Salarrezaei, E., & Roshandel, Z. (2020). Screening efficacy of available HIV protease inhibitors on COVID-19 protease. Journal Mil Med, 22(2), 100–107.
  • Mohamed, K., Yazdanpanah, N., Saghazadeh, A., & Rezaei, N. (2021). Computational drug discovery and repurposing for the treatment of Covid-19: A systematic review. Bioorganic chemistry, 106, 104490.
  • Morand, C., Manach, C., Crespy, V., & Remesy, C. (2000). Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors, 12(1–4), 169–174. https://doi.org/10.1002/biof.5520120127
  • Munster, A. M. (1979). Netilmicin: A new aminoglycoside in the treatment of septic burn patients. Archives of Surgery, 114(1), 28–30. https://doi.org/10.1001/archsurg.1979.01370250030005
  • Nabavi, S. F., Braidy, N., Gortzi, O., Sobarzo-Sanchez, E., Daglia, M., Skalicka-Woźniak, K., & Nabavi, S. M. (2015). Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin, 119(Pt A), 1–11. https://doi.org/10.1016/j.brainresbull.2015.09.002
  • Naik, B., Gupta, N., Ojha, R., Singh, S., Prajapati, V. K., & Prusty, D. (2020). High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. International Journal of Biological Macromolecules, 160, 1–17. 10.1016/j.ijbiomac.2020.05.184
  • Narayanan, N., & Nair, D. T. Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs, Laboratory of Genomic Integrity and Evolution, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001. Haryana. 2Manipal Academy of Higher Education, Manipal 576104, Karnataka. India. chemrxiv.org
  • Networking Chemical Biology. (2008). Nat Chem Biol, 4, 633. https://doi.org/10.1038/nchembio1108-633
  • Nićiforović, A., Adžić, M., Zarić, B., & Radojčić, M. (2007). Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells. Russian Journal of Physical Chemistry A, 81(9), 1463–1466. https://doi.org/10.1134/S0036024407090221
  • Ojha, H., Sharma, K., Kallepalli, S., Raina, S., & Agrawala, P. K. (2016). In-vitro evaluation of rutin and rutin hydrate as potential radiation countermeasure agents. Internatuinal Journal of Radiation Research, 14(1), 9–16. https://doi.org/10.18869/acadpub.ijrr.14.1.9
  • Ozkendir, O. M., Askar, M., & Kocer, N. E. (2020). Influence of the epidemic COVID-19: An outlook on health, business and scientific studies. Lab-in-Silico, 1(1), 26–30.
  • Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 1–11.
  • Pandey, R. K., Sharma, D., Bhatt, T. K., Sundar, S., & Prajapati, V. K. (2015). Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: Virtual screening, molecular docking, dynamics and ADMET approach. Journal of Biomolecular Structure and Dynamics, 33(12), 2541–2553. https://doi.org/10.1080/07391102.2015.1085904
  • Park, C. M., & Song, Y. S. (2019). Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice. Nutrition Research and Practice, 13(6), 473–479. https://doi.org/10.4162/nrp.2019.13.6.473
  • Park, M.-Y., Kwon, H.-J., & Sung, M.-K. (2011). Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sciences, 88(11–12), 486–492. https://doi.org/10.1016/j.lfs.2011.01.010
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Prayle, A., & Smyth, A. R. (2010). Aminoglycoside use in cystic fibrosis: Therapeutic strategies and toxicity. Current Opinion in Pulmonary Medicine, 16(6), 604–610. https://doi.org/10.1097/MCP.0b013e32833eebfd
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Ramirez, M. S., & Tolmasky, M. E. (2017). Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 22(12), 2267. https://doi.org/10.3390/molecules22122267
  • Release, S. J. E. Schrödinger, LLC, New York, NY, Impact, Schrödinger, LLC, New York, NY. (2016). 1: Schrödinger Suite 2017-1 Protein Preparation Wizard.
  • Riahi-Chebbi, I., Souid, S., Othman, H., Haoues, M., Karoui, H., Morel, A., Srairi-Abid, N., Essafi, M., & Essafi-Benkhadir, K. (2019). The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Scientific Reports, 9(1), 195. https://doi.org/10.1038/s41598-018-36808-z
  • Rimanshee, A., Amit, D., Vishal, P., & Mukesh, K. (2020). Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs.
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roh, C. (2012). A facile inhibitor screening of SARS Coronavirus N protein using nanoparticle-based RNA oligonucleotide. International journal of nanomedicine, 7, 2173.
  • Ryckaert, J.-P., & Bellemans, A. (1978). Molecular dynamics of liquid alkanes. Faraday Discussions of the Chemical Society, 66, 95–106. https://doi.org/10.1039/dc9786600095
  • Salehi, B., Venditti, A., Sharifi-Rad, M., Kręgiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E., Novellino, E., Antolak, H., Azzini, E., Setzer, W., & Martins, N. (2019). The therapeutic potential of apigenin. International Journal of Molecular Sciences, 20(6), 1305. https://doi.org/10.3390/ijms20061305
  • Samarth, S., & Kirk, M. (2020). Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS-CoV-2 spike (S)Protein - ACE2 complex.
  • Sarkodie, S. A., & Owusu, P. A. (2020). Impact of meteorological factors on COVID-19 pandemic: Evidence from top 20 countries with confirmed cases. Environmental Research, 191, 110101. https://doi.org/10.1016/j.envres.2020.110101
  • Saxena, A. (2020). Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45(1), 1–24. https://doi.org/10.1007/s12038-020-00067-w
  • Selloum, L., Bouriche, H., Tigrine, C., & Boudoukha, C. (2003). Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Experimental and Toxicologic Pathology, 54(4), 313–318. https://doi.org/10.1078/0940-2993-00260
  • Shankar, U., Jain, N., Majee, P., Mishra, S. K., Rathi, B., & Kumar, A. (2020). Potential drugs targeting Nsp16 protein may corroborates a promising approach to combat SARS-CoV-2 virus.
  • Shibano, M., Lin, A.-S., Itokawa, H., & Lee, K.-H. (2007). Separation and characterization of active flavonolignans of Silybum marianum by Liquid Chromatography connected with Hybrid Ion-Trap and Time-of-Flight Mass Spectrometry (LC–MS/IT-TOF). Journal of Natural Products, 70(9), 1424–1428. https://doi.org/10.1021/np070136b
  • Standl, E., Theodorakis, M. J., Erbach, M., Schnell, O., & Tuomilehto, J. (2014). On the potential of acarbose to reduce cardiovascular disease. Cardiovascular Diabetology, 13(1), 81. https://doi.org/10.1186/1475-2840-13-81
  • Tanner, J. A., Zheng, B.-J., Zhou, J., Watt, R. M., Jiang, J.-Q., Wong, K.-L., Lin, Y.-P., Lu, L.-Y., He, M.-L., Kung, H.-F., Kesel, A. J., & Huang, J.-D. (2005). The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chemistry & Biology, 12(3), 303–311. https://doi.org/10.1016/j.chembiol.2005.01.006
  • Tariq, A., Mateen, R., Sohail Afzal, S., & Saleem, M. (2020). Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. International Journal of Infectious Diseases, 98, 166–175.
  • Theoharides, T. C. (2020). COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors, 46(3), 306–308. https://doi.org/10.1002/biof.1633
  • Tian, B., & Hua, Y. (2005). Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chemistry, 91(3), 413–418. https://doi.org/10.1016/j.foodchem.2004.06.018
  • Torres, A., Motos, A., Battaglini, D., & Li Bassi, G. (2018). Inhaled amikacin for severe Gram-negative pulmonary infections in the intensive care unit: Current status and future prospects. Crit Care, 22(1), 343. https://doi.org/10.1186/s13054-018-1958-4
  • Truchon, J.-F., & Bayly, C. I. (2007). Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. Journal of Chemical Information and Modeling, 47(2), 488–508. https://doi.org/10.1021/ci600426e
  • Ubani, A., Agwom, F., Morenikeji, O. R., Shehu, N. Y., Luka, P., Umera, E. A., Umar, U., Omale, S., Aguiyi, J. C., Nnadi, N. E., & Luka, P. D. (2020). Molecular docking analysis of some phytochemicals on two SARS-CoV-2 targets. F1000Research, 9(1157), 1157.
  • Vijayan, R., & Gourinath, S. (2021). Structure-based inhibitor screening of natural products against NSP15 of SARS-CoV-2 revealed Thymopentin and Oleuropein as potent inhibitors. Journal of proteins and proteomics, 1–10.
  • Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutrition & Metabolism, 12(1), 60. https://doi.org/10.1186/s12986-015-0057-7
  • Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2, 69. https://doi.org/10.1186/1743-422X-2-69
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, J., Xiong, X., & Feng, B. (2013). Cardiovascular effects of salvianolic acid B. Evidence-Based Complementary and Alternative Medicine, 2013, 1–16. 10.1155/2013/247948
  • Wang, S-w., Wang, Y.-J., Su, Y-j., Zhou, W-w., Yang, S-g., Zhang, R., Zhao, M., Li, Y-n., Zhang, Z-p., Zhan, D-w., & Liu, R-t. (2012). Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology, 33(3), 482–490. https://doi.org/10.1016/j.neuro.2012.03.003
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. 10.1016/j.apsb.2020.02.008
  • Wu, H., Liu, Y., Chen, X., Zhu, D., Ma, J., Yan, Y., Si, M., Li, X., Sun, C., Yang, B., He, Q., & Chen, K. (2017). Neohesperidin Exerts Lipid-Regulating Effects in vitro and in vivo via Fibroblast Growth Factor 21 and AMP-Activated Protein Kinase/Sirtuin Type 1/Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α Signaling Axis. Pharmacology, 100(3–4), 115–126. https://doi.org/10.1159/000452492
  • Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., & Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. Journal of Pharmacology and Experimental Therapeutics, 296(1), 181–187.
  • Xiang, Z. (2006). Advances in homology protein structure modeling. Current Protein and Peptide Science, 7(3), 217–227. https://doi.org/10.2174/138920306777452312
  • Xiaoqi, W., Xin, B., Xu, Z., Li, K., Li, F., Zhong, W., … Peng, S. (2020). Network representation learning-based drug mechanism discovery and anti-inflammatory response against COVID-19.
  • Yan, H., Ma, L., Wang, H., Wu, S., Huang, H., Gu, Z., Jiang, J., & Li, Y. (2019). Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. Journal of Natural Medicines, 73(3), 487–496. https://doi.org/10.1007/s11418-019-01287-7
  • Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017
  • Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 56(2), 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • Zanwar, A. A., Badole, S. L., Shende, P. S., Hegde, M. V., & Bodhankar, S. L. (2014). Chapter 76 - Cardiovascular effects of hesperidin: A flavanone glycoside. In R. R. Watson, V. R. Preedy, & S. Zibadi (Eds.), Polyphenols in human health and disease (pp. 989–992). Academic Press.
  • Zhang, B., Zhang, J., Zhang, C., Zhang, X., Ye, J., Kuang, S., Sun, G., & Sun, X. (2018). Notoginsenoside R1 protects against diabetic cardiomyopathy through activating estrogen receptor α and its downstream signaling, Frontiers in pharmacology, 9, 1227. https://doi.org/10.3389/fphar.2018.01227
  • Zhang, Q., Xiao, X., Li, M., Li, W., Yu, M., Zhang, H., Wang, Z., & Xiang, H. (2013). Acarbose reduces blood glucose by activating miR-10a-5p and miR-664 in diabetic rats. PloS One, 8(11), p.e79697. https://doi.org/10.1371/annotation/330eea00-9c09-4982-a458-3add994bab9d
  • Zhang, Z. F., Fan, S. H., Zheng, Y. L., Lu, J., Wu, D. M., Shan, Q., & Hu, B. (2014). Troxerutin improves hepatic lipid homeostasis by restoring NAD(+)-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochemical Pharmacology, 91(1), 74–86. https://doi.org/10.1016/j.bcp.2014.07.002
  • Zhuang, P., Zhang, Y., Cui, G., Bian, Y., Zhang, M., Zhang, J., Liu, Y., Yang, X., Isaiah, A. O., Lin, Y., & Jiang, Y. (2012). Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PloS One, 7(4), e35636. https://doi.org/10.1371/journal.pone.0035636
  • Zufferey, R., Bibis, S. S., Zhu, T., & Dhalladoo, S. (2012). Characterization of a compensatory mutant of Leishmania major that lacks ether lipids but exhibits normal growth, and G418 and hygromycin resistance. Experimental Parasitology, 130(3), 200–204. https://doi.org/10.1016/j.exppara.2012.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.